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Earthquake Alarm Systems, or ElarmS, is a network-based earthquake early warning 
(EEW) system developed in California. This dissertation concerns the transition of 
ElarmS from research prototype to production-grade code. We test ElarmS’ performance 
for large earthquakes with an extensive dataset of large events from Japan. Using the 
Japanese dataset and results, we develop a statistical error model for the magnitude, 
location, and ground motion prediction algorithms. We adapt ElarmS to run continuously 
throughout the state and analyze system latencies due to various seismic networks and 
instruments. We then rewrite ElarmS completely in newer, more efficient code, while 
redesigning the association and alert algorithms for improved performance. Finally, we 
apply an Artificial Neural Network (ANN) at the end of system processing, to detect and 
block false alerts. The ANN allows ElarmS to send earlier, faster alert messages, when 
fewer stations have contributed data to an event estimate. ElarmS now sends realtime 
alert messages to the California Integrated Seismic Network’s ShakeAlert EEW system. 
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Chapter 1 
 
Introduction 
 
 
 
Earthquake Early Warning and ElarmS 
 
Earthquake Early Warning (EEW) is a method of recognizing earthquakes as they occur, 
and providing warning before severe shaking reaches major metropolitan areas. It 
depends on dense networks of seismic detection instruments, rapid and reliable 
connections to central computers, and efficient software that recognizes and characterizes 
the earthquake in a matter of moments.  The resulting alert messages can provide a few 
seconds to tens of seconds of warning before damaging shaking arrives.  
 
Simple EEW devices have been in use since the 1980s and have gradually increased in 
both complexity and capability over the ensuing decades. Currently there are operational 
EEW systems in Mexico, Japan, Taiwan, Turkey, and Romania, sending realtime 
warnings to government agencies and private corporations by direct computer link, and in 
some cases to the general public via cell phone.  
 
In California, EEW has been in research development for more than ten years, and is just 
in the last few years making the transition to production-grade systems, available for 
public and private use.  
 
This dissertation concerns a particular California EEW algorithm, called Earthquake 
Alarm Systems, or ElarmS, and its transition from research prototype to robust 
production code. ElarmS is part of the new ShakeAlert EEW system run by the California 
Integrated Seismic Network (CISN), currently delivering prototype alert messages to 
government and industrial users throughout California.  
 
Evaluating Uncertainties and Performance for Large Events 
 
EEW systems are designed specifically for large earthquakes, but there have not been 
enough recent large earthquakes in California to substantially test ElarmS’ performance 
for these events. In 2007 and 2008, we applied the ElarmS algorithm to a dataset of large 
earthquakes in Japan. This gave us the opportunity to observe ElarmS’ performance with 
many earthquakes much larger than those typically seen in California. The expansive new 
dataset was also useful for evaluating uncertainties in the algorithm’s estimates of events. 
We used the uncertainties to develop a statistical error model for ElarmS. The results of 
this study are described in Chapter 2, which was published in its entirety in Seismological 
Research Letters (Brown, et al., 2009). 
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Realtime Implementation 
 
Chapter 3 describes the transition of ElarmS from processing events offline, long after an 
event has ended, to realtime processing as the event unfolds. This transition involved a 
tremendous group effort. New hardware connections and software capability had to be 
established to handle hundreds of simultaneous incoming data streams. The ElarmS 
algorithm had to be modified to run continuously, to tolerate triggers arriving out of sync 
with each other, and to send realtime alert messages to the development group. Of new 
relevance were latencies in the system; where and by how much were data transmissions 
delayed? How did these latencies affect event processing? Chapter 3 investigates these 
questions and other aspects of realtime processing, and was published in its entirety in 
Soil Dynamics and Earthquake Engineering (Brown, et al., 2011). 
 
Developing the Second-Generation ElarmS Code 
 
Once ElarmS was running successfully in realtime, we were theoretically ready to 
connect it to the CISN ShakeAlert EEW system. But the ElarmS code was still a research 
prototype, albeit heavily upgraded and modified. In 2010 and 2011 we rewrote ElarmS 
from scratch into a new, production-grade code called E2. Many parts of E2, such as the 
thoroughly vetted magnitude scaling relations, were functionally identical to the original 
ElarmS, just written more cleanly in a more modern coding language. Other parts, such 
as the association algorithm and the waveform processing module, were significantly 
rewritten. Chapter 4 details the author’s contribution to the new E2 code. 
 
Improving ElarmS Performance with Assistance from an Artificial Neural Network 
 
Finally, we took the realtime, production-grade E2 code, and applied an Artificial Neural 
Network (ANN) at the end of the processing stream to filter out false alerts. The 
operational version of ElarmS currently requires four seismic stations to register a P-
wave arrival before it will send out an alert message. Waiting for four stations greatly 
decreases the chance of false alarms, but delays the alert message by about two seconds. 
The ANN improves the false alarm rate for events with only two or three stations, 
allowing ElarmS to send faster alerts. Chapter 5 summarizes the ANN study and results, 
and has been submitted for publication in the Bulletin of the Seismological Society of 
America. 
 
Between 2007 and 2012 we greatly improved and updated ElarmS, resulting in a true 
metamorphosis from research prototype to real-world product. Today ElarmS operates 
continuously, processing seismic waveforms from every EEW-compatible seismic station 
in the state and sending realtime alert messages to the CISN ShakeAlert system. The 
research and updates described here have the potential to reduce loss of life due to 
earthquakes in California for years to come. 
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Chapter 2 
 
Testing ElarmS in Japan 
 
 
 
This chapter has been published in Seismological Research Letters 
as “Testing ElarmS in Japan”, by Brown, Allen and Grasso, 2009. 
Issue 80(5), pages 727-739. 
 
 
 
2.1 Introduction 
Earthquake early warning systems use seismic networks, rapid telemetry, and software 
algorithms to detect an earthquake immediately after its inception, estimate its damage 
potential, and disseminate a warning to surrounding communities before peak ground 
shaking occurs. Earthquake Alarm Systems, or ElarmS, is an earthquake early warning 
system developed in California. The ElarmS algorithm recognizes earthquakes from the 
initial P-wave arrivals at seismometers near the epicenter. The characteristics of the P-
wave, including amplitude and frequency, are used to estimate a final magnitude for the 
event. P-wave arrival times from several stations are combined to estimate the hypocenter 
of the event. Finally, the estimated magnitude and hypocenter are applied to attenuation 
relations to produce a prediction of ground shaking levels in the region. 
 
ElarmS has been tested extensively with datasets of earthquakes from northern and 
southern California (Allen and Kanamori, 2003; Allen, 2007; Wurman, et al., 2007, 
Tsang, et al., 2007; Allen, et al., 2009). While the test datasets from California included a 
large range of locations and source types, there are a limited number of recent, well-
recorded, large earthquakes available for testing the early warning system. In this study 
we take ElarmS to another geographic and seismic setting, and test the algorithms with a 
dataset of 84 large-magnitude earthquakes, including 43 of magnitude 6.0 or greater, in 
Japan. The Japanese test dataset is valuable both for the insight into ElarmS’ processing 
of large events, and for the chance to process events in a completely different geologic 
setting. The offshore and deep nature of many of the events presents new challenges to 
the methodology. The Japanese earthquakes offer an opportunity to improve the 
robustness of ElarmS, extend its abilities to other settings, and confirm its relevance for 
large-magnitude events. 
 
2.2 Earthquakes 
The dataset contains 84 earthquakes recorded by Japan’s Kyoshin Net (K-NET) strong-
motion seismic network. K-NET consists of 1,000 digital strong motion seismometers, 
distributed across Japan with approximately 25km spacing. Each station is capable of 
recording accelerations up to 2,000 cm/s

2, with a sampling frequency of 100 samples per 
second and a dynamic range of 100dB. 
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The 84 test earthquakes occurred between September 1996 and June 2008 (Figure 2.1). 
The waveforms were downloaded directly from the K-NET website (www.k-
net.bosai.go.jp). All events occurred within 100km hypocentral distance of at least three 
stations. The JMA magnitude estimates range from 4.0 to 8.0. Forty-three events have 
magnitudes of 6.0 or greater. The largest event in the dataset is the Tokachi-Oki 
earthquake of 26 September, 2003, which had a magnitude of 8.0.  
 
2.3 Warning Methodology 
2.3.1 Location 
When only one station has triggered on a P-wave arrival, ElarmS sets the estimated 
hypocenter directly beneath the station, at a depth of 8km. When a second station 
triggers, or if the first two stations trigger simultaneously, ElarmS locates the event on the 
great circle between the two stations, at a location dependent on their arrival times, again 
at a fixed depth of 8km. When three stations have triggered, ElarmS triangulates an event 
epicenter using a two-dimensional grid search, the arrival times at each of the stations, 
and a typical P-wave velocity. The depth is still fixed at 8km. In California, this third 
method continues to be used when four, five, or more stations have triggered. Note that 
the use of a two-dimensional grid search and fixed depth are acceptable for the shallow 
seismogenic zone in most of California.  
 
In the Japanese subduction zone, however, this is inappropriate. For the Japanese dataset 
a three-dimensional location algorithm is needed. The first three scenarios, for one, two, 
or three triggers, remain the same. When four or more stations have triggered, ElarmS 
creates a three-dimensional grid of possible event hypocenters, with depths ranging from 
0km to 100km in steps of 10km. Observed P-wave travel times are compared to those 
predicted by travel time curves for seismic waves originating at each point of the grid. 
The best match of arrival times is deemed to be the event hypocenter. As additional 
stations trigger, the grid search is repeated and the estimated hypocenter is updated.  
 
2.3.2 Magnitude 
ElarmS uses two P-wave parameters, peak amplitude and maximum predominant period, 
to create two independent estimates of final event magnitude. The estimates from each 
parameter are then averaged together to form the ElarmS magnitude for the event.  
 
Maximum predominant period, τpmax, was developed first and provided the original 
framework for ElarmS (Allen and Kanamori, 2003). For a given region, observed τpmax 

values from the first few seconds of the P-wave are plotted as a function of final event 
magnitude. A least-squares fit to the data results in τpmax vs. magnitude scaling relations 
for the region (Allen and Kanamori, 2003; Lockman and Allen, 2007; Wurman, et al., 
2007; Tsang, et al., 2007). These empirically determined scaling relations are then used 
to estimate magnitude.  
 
For a given event, the first station to recognize a P-wave arrival reports a τp

max value after 
one second of observation. As additional seconds pass, the station may update that value 
if a larger τp

max is observed. When more stations trigger, they too initially report one-
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second τp
max values, which may increase with additional seconds of data. Each second, 

ElarmS applies the scaling relations to the most current τpmax observation from each 
triggering station to determine an estimated magnitude. All station magnitudes are then 
averaged together to create a single τpmax-based magnitude. This averaged magnitude 
estimate is adjusted every second, as current stations update their τpmax observations and 
new stations trigger. 
 
Peak displacement amplitude, Pd, of the P-wave was added as an ElarmS parameter by 
Wurman, et al., in 2007. For a given region, observed Pd values are recorded at each 
station, scaled to a common epicentral distance, and plotted against final event 
magnitude. Again, a least squares fit is used to determine regional Pd vs. magnitude 
scaling relations. During event processing, Pd observations are combined in the same way 
as τp

max observations. Each triggered station reports a Pd observation every second. The 
Pd value may increase if a large displacement is observed later in the P-wave. ElarmS 
converts each Pd observation to an estimated magnitude, and then averages all the 
estimated magnitudes together to create a single Pd-based magnitude. As more Pd 
observations become available, they are incorporated into the estimate. 
 
ElarmS performs each of these scaling calculations independently, resulting in one τpmax-
based magnitude estimate and one Pd-based magnitude estimate each second. The two 
magnitudes are averaged together to create the “ElarmS” magnitude estimate, which is 
used for predicting ground shaking. ElarmS uses a simple linear average of the two 
methods, as we have yet to observe an improvement with the use of a weighted average 
(Wurman, et al., 2007). 
 
2.3.3 AlertMaps 
Once a hypocenter and magnitude are estimated, ElarmS predicts regional ground 
accelerations from attenuation relations. For Japan, ElarmS uses the same attenuation 
relations that the NEIC uses to create ShakeMaps for Japanese events. For events 
shallower than 20km or with magnitude less than 7.7, the attenuation relations are those 
defined by Boore, et al. (1997). For all other events in Japan, the attenuation relations are 
those from Youngs, et al. (1997). 
 
The initial AlertMap is generated using only the estimated magnitude and event location. 
As stations begin observing peak ground acceleration (PGA), the observations are 
incorporated into the AlertMap and the attenuation function is adjusted to best fit the 
available data. The intent of including PGA observations is to correct for any errors in the 
ElarmS estimate of magnitude. As each PGA observation is added, the AlertMap 
predictions are adjusted closer to the true observed ground motions. If the catalog 
magnitude and location are used for an event, and all PGA observations are included, 
then by definition the AlertMap exactly equals the USGS ShakeMap for that event. Using 
the estimated magnitude and location, any error in the final AlertMap, after all PGA 
observations are included, is thus due to errors in the magnitude and location estimates. 
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2.3.4 Error Calculations 
Errors are calculated by comparing ElarmS’ output to published or observed values. For 
magnitude and location, the ElarmS estimate is compared to the K-NET published 
magnitude and location. For ground motions, the ElarmS prediction for any station which 
has not yet observed peak ground shaking is compared to the final observation at that 
station. Only predictions that are made before peak ground shaking occurs are considered 
for the error analysis. 
 
2.4 System Performance 
2.4.1 Magnitude Estimation 
We begin by determining the scaling relationship between peak displacement (Pd) and 
magnitude in Japan. Acceleration data from each station is double integrated to 
displacement, and scaled to a common epicentral distance of 10km. These scaled 
displacements are then plotted as a function of the K-NET catalog magnitude (ML). 
Applying a least-squares fit to the observed log10(Pd) values gives a scaling relation of 
log10(Pd) = 0.66*ML – 4.02, shown in Figure 2.2a. The dashed line in the figure is the 
scaling relation for Northern California, log10(Pd) = 0.73*Mw – 3.77 (Wurman, et al., 
2007). The scaling relation for Japan is of a similar slope to that of Northern California, 
but with lower displacements at all magnitudes. This implies that Japan has higher 
attenuation than Northern California.  
 
Pd observations from all events are weighted equally in the determination of the Pd 
scaling relations. We note that the largest event, the M8.0 Tokachi-Oki earthquake, does 
not fall on the scaling relations. Using the observed displacements for Tokachi-Oki and 
the Pd scaling relations determined from all events, ElarmS underestimates the event 
magnitude by more than one magnitude unit. Other studies have shown that peak 
displacements may saturate at near-source stations during large magnitude events 
(Wurman, et al., 2007; Zollo, et al., 2006). This is the effect we observe for the largest 
earthquake in our dataset. The relatively low amplitudes near the source can lead to 
underestimation of magnitude. This suggests that Pd should not be used alone in regions 
that are prone to very large earthquakes. 
 
The second magnitude estimation method is maximum predominant period, or τpmax. The 
observed τp

max values at each station are plotted in Figure 2.2b against the final catalog 
magnitude of each event. A least-squares fit to the data produces a scaling relation of 
log10(τp

max) = 0.21*ML – 1.22, shown as the solid line in Figure 2.2b. Wurman et al, 2007, 
found a scaling relation for Northern California of log10(τp

max) = 0.15*Mw – 0.78, shown 
as the dashed line. The observed predominant periods in Japan are of similar values to 
those of Northern California, but the best-fit slope is steeper in Japan. τpmax does not 
appear to display the saturation effects that Pd does. For the M8.0 Tokachi-Oki event, 
using the best fit scaling relation and τpmax observations leads to an estimated magnitude 
of 8.2, using τp

max alone. However, τp
max shows more scatter than Pd, particularly for the 

lowest magnitude events. This agrees with similar results found by previous studies 
(Olson and Allen, 2005; Wurman, et al., 2007). 
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ElarmS produces a single event magnitude by averaging together the magnitudes from Pd 
and τp

max. Figure 2.2c shows the three magnitude estimates for each event. The green 
points are the magnitude estimates for each event using only Pd observations at each 
station. The blue points are the magnitude estimates using only τpmax, and the red points 
are the final magnitude estimate for each event when τpmax and Pd magnitudes have been 
averaged together. The red line is the linear best fit to the averaged magnitudes. The 
dashed black line is the desired 1-1 fit, for which the ElarmS estimated magnitude would 
be exactly equal to the K-NET catalog magnitude. The averaged magnitudes fall close to 
the desired 1-1 fit, improving on both the saturation effects of Pd at high magnitudes and 
the scatter of τp

max at low magnitudes. For the M8.0 event, the averaged ElarmS 
magnitude is 7.5, one half unit lower than the published magnitude. 
 
Figure 2.2d shows a histogram of the error in the average magnitude estimates from 
Figure 2.2c. The red curve in the figure is the bestfit Gaussian distribution. The mean 
error is 0.0, with a standard deviation of 0.4 magnitude units. All but one event is within 
one magnitude unit. The one deviant event is a magnitude 4.1. The τpmax observations for 
that event are high, leading to an average magnitude of 5.18.  
 
2.4.2 Magnitude Estimation of Largest Events 
Of primary concern is the accuracy of ElarmS magnitude estimates for large magnitude 
events. We consider subsets of the dataset, analyzing events within specific magnitude 
ranges. For events with magnitude 6 or greater, the mean error is 0.04 magnitude units, 
with a standard deviation of 0.46. This is only slightly higher than the mean and standard 
deviation for all events. For events of magnitude 7 or greater (of which there are eight in 
this dataset, including the M8.0 Tokachi-Oki event), the ElarmS magnitude has a mean 
error of -0.21, with a standard deviation of 0.53. This underestimation for the largest 
events is partly due to the saturation of P-wave amplitudes for large events, but is also 
related to the offshore location of the largest events. Poor azimuthal coverage causes 
large errors in the estimated epicentral distance, which in turn contaminates the 
magnitude determined by peak displacement.  
 
2.4.3 Magnitude Dependence on Time 
Each station reports to ElarmS once every second, updating its observed values of 
displacement and period. The peak displacement may occur in the first second after a 
trigger, or it may occur later. If a larger displacement is observed in later seconds, the 
peak value for that station will be increased accordingly. If the one-second value 
continues to be the largest as additional seconds of data are recorded, that one-second 
peak is kept throughout. Thus the peak displacement recorded in the first second is the 
minimum possible value for that station. The same is true for maximum predominant 
period, τp

max . The one-second observation of τp
max is the minimum value for that station. 

It may be increased with additional seconds of data, but not decreased.  
 
Magnitude error is thus directly dependent on the number of seconds of data available at 
each station. In Figure 2.3 we calculate separate scaling relations for each time window.  
Figure 2.3a shows the resulting scaling relations for peak displacement, Pd, given a 1-,2-
,3-,4-, or 5-second window. Using one second of data at each station results in a shallow 
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slope to the scaling relation, leading to systematic underestimation of magnitude for 
larger events. Each additional second of data increases the slope and improves the 
magnitude estimate for large events. The change from four to five seconds is minimal. 
We therefore determine that four seconds is the optimal time window, providing the most 
data while still allowing rapid response to the earthquake. 
 
Figure 2.3b shows the effect of time window on maximum predominant period. τpmax is 
less sensitive to time window, but still shows a slight increase in slope and improvement 
in magnitude estimate with additional seconds of data. The fit to large events in particular 
improves with additional seconds. This verifies the finding of Allen and Kanamori 
(2003), that the initial magnitude using one second of data is a minimum estimate, and 
additional seconds of data increase the magnitude estimate for large events. Again the 
four-second window maximizes data availability and timeliness. 
 
2.4.4 Magnitude Dependence on Stations 
Any earthquake early warning system is dependent on data that arrives one station at a 
time. We test the sensitivity of the scaling relations to the number of stations reporting 
triggers. The stations are sorted by distance to the epicenter, and only the closest 1, 2, 3, 
etc., stations are used to estimate magnitude. Figure 2.4 shows the absolute value of error 
in ElarmS magnitude estimates as additional station data is incorporated. The green and 
blue dashed lines are the error in the independent magnitude estimates made using only 
Pd or τp

max, respectively. The solid line is the error in the averaged magnitude estimate, 
which ElarmS uses to predict ground motions in the region. This combined Pd and τp

max 
estimate has an average absolute error of less that 0.42 magnitude units using only the 
single closest station to the epicenter, and the error decreases with the addition of more 
stations. Pd by itself produces an average error of less than half a magnitude unit for all 
numbers of stations. τp

max by itself has higher error values than Pd, but still less than 0.6 
magnitude units on average. Using only the closest one or two stations to the epicenter, 
the average error (solid line) is lower than both individual errors. This is because one 
method may overestimate the magnitude and the other may underestimate it; their 
average is closest to the true magnitude.  Once three or more stations are providing data 
the average error in the magnitude using Pd alone is slightly lower than the average 
estimate.  However, given the uncertainties (error bars in Figure 2.4) this difference is 
insignificant and we prefer to use two independent magnitude estimates rather than 
relying on just one. 
 
2.4.5 Magnitude Error Distributions 
Every ElarmS magnitude estimate is dependent on both the number of seconds of data at 
each station, and the number of stations reporting. If we wish to know the uncertainty in a 
given magnitude estimate, we must consider the quantity of data included in the estimate. 
Figure 2.5 shows magnitude error histograms and best-fit Gaussian probability 
distributions, determined for specific quantities of data. The mean and standard deviation 
for all the error distributions are shown in Table 2.1. Figure 2.5a and b use exactly one 
second of P-wave arrival at each station. Figure 2.5a shows the error histogram when the 
closest 5 stations each contribute 1 second of data. The curves in Figure 2.5b represent 
the best-fit Gaussian error distributions when 1, 2, 3, 4 or 5 stations each contribute 1 
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second of data to the magnitude estimate. Figures 2.5c and d are for 2 seconds of data, 
Figure 2.5e and f for 3 seconds, up to 5 seconds of data in Figure 2.5i and j.  The 
probability distributions get more peaked in each row, indicating that additional seconds 
of data improve the accuracy of the magnitude estimate.  
 
More data for a magnitude estimate is always desired, but an early warning system must 
be prompt to be useful. ElarmS creates its initial magnitude estimate using the first 
second of data at the first triggered station, and then updates the estimate as more data 
becomes available. The error distributions shown in Figure 2.5 can be used to assign an 
uncertainty to the ElarmS magnitude estimate from the first estimate when 1 sec of data 
is available. 
 
2.4.6 Location 
The Japanese events presented a challenge in that many occurred offshore (Figure 2.1). 
The ElarmS location algorithm depends on triangulating between several stations, but this 
can be hindered by poor azimuthal coverage. For many events all stations are to the west, 
and the process of locating the hypocenter accurately requires more stations than it does 
for onshore events. Many events are also very deep, and a minimum of four stations must 
be available before hypocentral depth can be estimated. The mean error in the 
hypocentral location for all events and any number of stations providing arrival times, i.e. 
one station up to the total number of triggering stations for each event, is eighteen 
kilometers. The greatest errors are for those occurring furthest offshore or deepest. Figure 
2.6a shows a histogram of hypocentral location errors, using P-wave arrival times from 5 
stations. The errors using 1 to 5 stations are listed in Table 2.1. We determine the best 
fitting log-normal distributions (Figure 2.6b) for location error. These distributions can be 
used to estimate the error in any given ElarmS location, as a function of the number of 
stations reporting triggers. 
 
2.4.7 Attenuation Relations 
The final source of error is the attenuation relation used to translate magnitude and 
location into a prediction of local ground acceleration. To isolate this error we give 
ElarmS the catalog magnitude and location for each event. ElarmS applies those 
parameters to the ShakeMap attenuation relations for Japan to create an initial AlertMap 
prediction of ground motions. As stations report peak ground shaking observations, 
ElarmS incorporates them into the model and adjusts the predictions accordingly. Thus 
the only sources of error in the final PGA predictions are the attenuation calculations 
themselves, and any scatter in the local PGA observations.  
 
The predictions are then compared to the actual observed ground motions recorded at any 
station whose data is not yet incorporated into the model. Figure 2.7a shows a histogram 
of the resulting errors when five PGA observations are included. Table 2.1 lists the mean 
errors using 0 to 5 PGA observations. Figure 2.7b shows the probability distributions 
derived from the error data. The yellow curve is the initial ground motion estimates, 
using only magnitude and location with no peak shaking observations. As stations report 
peak ground shaking, their observations are used to adjust the AlertMap PGA predictions 
up or down. The remaining curves show the error in the adjusted PGA predictions, when 
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actual PGA observations are included. Using one or two PGA observations results in the 
most error, more than the zero-observations case. The increased error using only one or 
two PGA observations occurs because each peak ground acceleration observation is 
affected by unpredictable path effects, and may have significant variability compared to 
the average regional ground shaking. Only after several individual station observations 
are included do their individual errors cancel each other out. The errors using three, four, 
or five PGA observations are better than those of the zero-observation case. This suggests 
ElarmS should use the initial, zero-observation model until at least three PGA 
observations are available. 
 
2.4.8 Example Earthquake 
Figure 2.8 shows a step-by-step progression of ElarmS processing for an example event 
in Japan. The event is a magnitude 6.4, occurring 26 July, 2003, at a depth of 11.9km. 
The first two triggers are recognized at two stations simultaneously (Figure 2.8a). ElarmS 
places the event location between the two stations, at a fixed depth of 8km. One second 
later (Figure 2.8b), ElarmS combines the Pd and τp

max observations from these two 
stations to create a magnitude estimate of 6.6 and predicts the distribution of ground 
shaking. A third station triggers, and the epicenter is estimated, with depth still fixed at 
8km. One second later (Figure 2.8c), which is two seconds after the first trigger, the third 
station’s data is incorporated into the estimate, and magnitude is decreased to 6.2. Two 
more stations trigger, and the five total triggers so far are used to estimate a hypocenter, 
at a depth of 10km. Finally, Figure 2.8d shows the ElarmS AlertMap when all data for 
the event is available, 12 seconds after the first trigger. The final ElarmS magnitude 
estimate is M6.4. The magnitudes include Pd and τp

max observations from all 26 available 
stations, and the AlertMap is adjusted for peak ground shaking observations from all 26 
stations.  
 
2.5 ElarmS Errors 
2.5.1 The Error Model 
To determine the total error in the ElarmS prediction of ground shaking, we combine the 
errors determined for magnitude, location, and attenuation relations. The mean and 
standard deviation from each probability distribution above are used to run a Monte Carlo 
simulation, generating random errors within each distribution. These errors are then 
factored into the ground motion predictions using the NEIC’s preferred attenuation 
relations for Japan. The NEIC global attenuation relations use either the Boore, et al., 
(1997) or the Youngs, et al., (1997) model, depending on depth and magnitude of the 
event. ElarmS follows the same criteria, choosing between the two models accordingly. 
For the example below, we show the error calculations from Boore, et al., (1997). The 
coefficients (B1, B2, B3, B5) are those recommended by Boore for a reverse mechanism 
event. 
 
The “expected” ground motions are determined by applying the catalog magnitude and 
location to the attenuation relations with no errors. This represents the ideal output from 
ElarmS, if all estimates were perfect.  
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Ideal output:  
ln(PGA)ideal = B1 + B2*(M-6) + B3*(M-7) + B5*ln(R) 
 
M is the magnitude, R is the distance from the event epicenter to the location whose PGA 
is being predicted, and B1,B2,B3, and B5 are coefficients.  
 
To calculate the ground motion estimates provided by ElarmS, the catalog magnitude and 
location are again applied to the attenuation relations, but now with the addition of the 
errors generated by the Monte Carlo simulation.  
 
Estimated output:  
ln(PĜA) = B1 + B2*(M+εM – 6) + B3*(M+εM – 7) – B5*ln(R ± εR) + εAtt 
 
The total error in the ElarmS estimated ground motions is the difference between the 
ideal and estimated values. 
 
Error:  
εPGA = ln(PGA)ideal – ln(PĜA) 
 
These error estimates have no units and are the natural logarithm of the ratio of the ideal 
PGA estimate to the ElarmS estimate.  A positive error means the predicted PGA was 
lower that the ideal. A factor of two difference between the ideal and predicted PGA 
results in an error of 0.7, and a factor of 10 in an error of 2.3. 
 
Monte Carlo simulations can now be used to determine the error distribution, εPGA, for 
any warning scenario.  These errors include contributions from the magnitude estimation, 
the location estimation, and the attenuation relations. Each of these factors has multiple 
error distributions, depending on the number of reporting stations. Thus the total error, 
εPGA, is a function of the number of stations contributing to the location estimate, the 
number of stations providing Pd and τp

max values, the number of seconds of data available 
at each of those stations, and the number of stations reporting peak ground motion 
observations. We only consider situations where the total number of triggered stations is 
greater than or equal to the number of stations providing magnitude estimates, which is in 
turn greater than or equal to the number of stations providing peak ground shaking 
estimates. We consider up to 5 stations reporting each of the observational parameters 
and generate a 1000-run Monte Carlo simulation for each of the 1086 combinations of 
station contributions.  
 
The parameters for each of the resultant distributions are kept in an internal ElarmS 
library, to choose from for any given scenario. For example, when ElarmS makes a 
prediction of impending ground motions, based on a location derived from 2 station 
trigger times, 2 magnitude estimates (one with 2 seconds of data and one with 1 second 
of data), and 0 peak ground shaking observations, it reports that the expected error in the 
predicted shaking 100 km from the epicenter is -0.13 ± 0.45, determined from the 
appropriate (pre-calculated) Monte Carlo simulation. The error distribution for this 
scenario is shown as the red line in Figure 2.9a, along with the distributions for two other 
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example scenarios. The green line is the PGA error distribution given 3 stations 
contributing to location, 2 magnitude estimates (one with 3 seconds of data and one with 
2 seconds of data), and 1 peak ground shaking observation. The blue line is the 
distribution given 5 stations contributing to location, 5 magnitude estimates (4 with four 
seconds and 1 with three seconds), and 3 peak ground shaking observations. Table 2.2 
lists the errors predicted by the model for the example event in section 4.8, at various 
distances from the hypocenter. Figure 2.9b shows the distributions from all 1086 
combinations of station contributions. The mean errors for these distributions range from 
-0.17 to 0.20, with a median of 0.04. Standard deviations range from 0.32 to 0.56, with a 
median of 0.39.  
 
2.5.2 Sensitivity Analysis 
We perform a sensitivity analysis on the Monte Carlo error distributions, to explore the 
source of errors in the final ground motion predictions. Each error distribution is 
generated with the input of error terms for magnitude, location, and attenuation relations. 
One by one we set each of these error terms equal to zero, leaving the others at their 
observed values and recalculating all 1086 Monte Carlo simulations.  
 
Figure 2.9c shows the resulting distributions if the magnitude error is zero, meaning the 
simulated ElarmS magnitude estimate is exactly equal to the catalog magnitude. All error 
is due to the location estimate and attenuation relations. The mean errors of these 
distributions range from -0.04 to 0.21, with a median of 0.07. The standard deviations 
range from 0.31 to 0.49, with a median of 0.37. The mean errors are now positive and no 
longer centered on zero compared to the complete error model (shown in Figure 2.9b). 
The standard deviations are 5% lower than those of the complete error model, on average, 
resulting from the fact that there is reduced uncertainty in the PGA estimates. 
 
Figure 2.9d shows the distributions if the location error is zero. That is, the simulated 
ElarmS location estimate is exactly equal to the catalog location, and any error is due to 
the magnitude estimate algorithm and attenuation relations. The mean errors of these 
distributions range from -0.11 to 0.22, with a median of 0.04. The standard deviations 
range from 0.28 to 0.50, with median of 0.34. The mean errors are similar to those of the 
complete error model (Figure 2.9b), while the standard deviations are 13% lower.  
 
Figure 2.9e shows the distributions if the error from the attenuation relation is set to zero. 
Here the attenuation relations are assumed to be perfect, and the only error comes from 
the magnitude and location estimates. The mean errors of these distributions range from -
0.25 to 0.25, with a median of -0.06. The standard deviations range from 0.15 to 0.44, 
with a median of 0.20. This is a substantial improvement over the complete error model 
shown in Figure 2.9b, with a mean still centered around zero, but standard deviations that 
are 49% lower.  From this we conclude that the inherent variability in ground motion at a 
point with respect to even the best fitting attenuation relation is the largest source of error 
in the ElarmS prediction of ground shaking. 
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2.6 Conclusions 
 
a) The scaling relations between Pd and magnitude and between τpmax and magnitude are 
clearly evident for this Japanese dataset. This is an important result, given the large 
number of large (M>6) earthquakes. It implies that the basic ElarmS magnitude 
algorithms remain robust and useful for large magnitude events. For the entire dataset the 
average magnitude error and standard deviation is 0.0±0.4.  For events with JMA 
magnitude of 6.0 or greater the error is 0.0±0.5, for M≥7 events it is -0.2±0.5.  This 
indicates a “saturation” effect for the M≥7 earthquake, which is partly due to a saturation 
in P-wave amplitude and partly due to difficulty in rapid and accurate locations of the 
large events which are all offshore. 
 
b) Both of the scaling algorithms, Pd and τp

max, are independently effective at estimating 
final magnitude from the first few seconds of the P-wave. Combining the two working 
methods reduces error in the final magnitude estimate when only a small number of 
stations are reporting and increases the overall robustness of the system. Peak 
displacement is vulnerable to saturation at the highest magnitudes and initial uncertainty 
in event location. Maximum predominant period shows more scatter for the low-
magnitude events, but is less sensitive to saturation at high magnitudes and uncertainty in 
location. A system based on both Pd and τp

max is therefore more robust for all events.  
 
c) While ElarmS estimated the location of the majority of events within 18km, it 
struggled to accurately locate events that were far offshore. The addition of a new 
algorithm for determining hypocentral depth improved the location estimates of deep 
events, but accurate location of deep, distant events remains a challenge. The errors from 
these poor location estimates affect the final ground motion predictions in this region. 
They also contribute to errors in the magnitude estimate made from peak displacement 
observations, since these are scaled by epicentral distance. We note that for current 
realtime processing in California, these location difficulties are not pertinent, as most 
events are on- or near-shore, and nearly all are shallower than 20km (Hill, et al., 1990). 
 
d) A new error model for ElarmS provides a library of error distributions generated by 
Monte Carlo simulations. Every ElarmS prediction of magnitude, location, and ground 
motions can now be provided with an associated uncertainty, based on the quantity of 
data contributing to the prediction. Uncertainty estimates are essential for both internal 
study of the system, and for potential end users, who must decide whether to act on a 
given prediction.   Using Monte Carlo simulations we explore the full range of errors in 
PGA predictions from the first estimate using 1 sec of P-wave data at the first station to 
trigger to using P-wave data and PGA observations at 5 stations.  The error distributions 
have mean errors of -0.2 to 0.2 (median 0.0) and standard deviations of 0.3 to 0.6 
(median 0.4).  A factor of 2 error in the predicted PGA relative to the observed 
corresponds to an error of 0.7.  
 
e) We find that the most significant contribution of the error in ElarmS’ final ground 
motion prediction comes from the inherent variability in peak ground motion at a given 
location with respect to even the best fitting attenuation relations. Calculating regional 
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ground motions from attenuation relations using only the estimated magnitude and 
location of the earthquake resulted in less error than did the same calculation with the 
addition of the first 1 or 2 observations of peak ground motion. Only when three or more 
station observations are combined does their inclusion in ground shaking estimation 
improve the accuracy of the predictions.  
 
The continued improvement of the ElarmS methodology increases its utility in California 
and in other regions. An accurate, prompt, and reliable early warning system in any 
seismic setting has the potential to reduce loss of life and money during a damaging 
earthquake. The developments from this study bring ElarmS one step closer to providing 
reliable realtime warnings to the public. 
 

14



30 

40 

Hokkaido

Shikoku

Honshu

Kyushu

130 140
30

40

130 140

40

30

★

Figure 2.1: Location map. Red circles are events used in this study, blue triangles are K-NET stations. 
The red star is the largest event in our dataset, the M8.0 Tokachi-Oki earthquake of 2003. 
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Figure 2.2: Scaling Relations. (a) Scaling relations for peak displacement. Blue circles are log10(Pd) values observed at 
individual stations and corrected for distance. Red triangles are average peak displacements for each event. Solid blue 
line is the linear best fit to this data, log10(Pd) = 0.66*ML – 4.02. Dashed black line is the linear best fit for Northern 
California, log10(Pd) = 0.73*Mw – 3.77(Wurman, et al., 2007). (b) Scaling relations for maximum predominant period. 
Blue circles are log10(τpmax) values observed at individual stations. Red triangles are average τpmax for each event. 
Solid blue line is linear best fit to this data, log10(τpmax) = 0.21*ML – 1.22. Dashed black line is linear best fit for 
Northern California, log10(τpmax) = 0.15*Mw – 0.78 (Wurman, et al., 2007). (c) ElarmS magnitude for each event. The 
green circles are magnitudes using only Pd, the blue circles are magnitudes using only τpmax , and each red triangle is 
the average of the Pd and τpmax magnitudes for that event. The solid red line is the linear best-fit to the average magni-
tudes (red triangles). The black dashed line is the ideal 1-1 fit, for which every ElarmS magnitude exactly equals the 
catalog magnitude for that event. (d) The histogram of errors in the average ElarmS magnitude estimates from (c). The 
red line is the best-fit Gaussian distribution for the magnitude errors and has a mean of 0.0 and standard deviation of 0.4.
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Figure 2.3: Effect of number of seconds of P-wave data on scaling relations. Circles are observations at individual 
stations, and lines are linear best-fit scaling relations to circles of the same color. Blue circles are observations 
made using only one second of P-wave data at each station; blue line is linear best fit scaling relation using only 
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Figure 2.8: AlertMap for an example earthquake, Magnitude 6.4, 26 July 2003, at a depth of 11.9km. (a)The first two 
triggers occur simultaneously. Event location (star) is set between the triggering stations, at a depth of 8km. Circular 
contours show the warning times as a function of location. (b) One second later, the first magnitude estimate, M6.6, is 
available and translated into ground shaking intensity across the region. A third station triggers, and the event epicenter 
is located by triangulating between the three triggering stations. Depth remains set at 8km. (c) One second later, all three 
stations are now contributing to the magnitude estimate, which decreases to M6.2. Two more stations trigger, and the 
five stations total are used to estimate an event hypocenter, at a depth of 10km. (d) The final ElarmS AlertMap, twelve 
seconds after the first trigger. Magnitude is M6.4. 26 stations are contributing to the magnitude, location, and ground 
motion estimates.
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Figure 2.9: Results from the Monte Carlo simulation of the 
ElarmS error model. (a) Three examples, showing best-fit 
Gaussian distributions for errors in ground motion estima-
tion, given various quantities of data input. The red line is the 
error if two stations contribute to a location estimate, two 
stations contribute to the magnitude estimate (one using 1 
second of P-wave data, one using 2 seconds), and zero 
stations report PGA observations. The green line is error if 
three stations contribute to the location estimate, two stations 
contribute to the magnitude estimate (one with 2 seconds of 
P-wave data, one with 3 seconds), and one station reports a 
PGA observation. The blue line is error if five stations 
contribute to the location estimate, five stations contribute to 
the magnitude estimate (4 with four seconds of P-wave data, 
one with 3 seconds), and three stations report PGA observa-
tions. (b)All 1086 error distributions resulting from the error 
model. Each line represents a unique combination of data 
inputs. (c-e) Sensitivity analysis. (c)Error model if magnitude 
estimate contains no error. (d)Error model if location 
estimate contains no error. (e)Error model if ground motion 
estimate contains no error.
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0 stations 1 station 2 stations 3 stations 4 stations 5 stations
Mag, 1 sec - -0.38 ± 0.63 -0.33 ± 0.56 -0.37 ± 0.57 -0.39 ± 0.56 -0.41 ± 0.56
Mag, 2 sec - -0.2 ± 0.57 -0.15 ± 0.5 -0.18 ± 0.54 -0.21 ± 0.52 -0.22 ± 0.50
Mag, 3 sec - -0.09 ± 0.53 -0.05 ± 0.48 -0.08 ± 0.52 -0.10 ± 0.49 -0.10 ± 0.47
Mag, 4 sec - 0.01 ± 0.52 0.04 ± 0.46 0.03 ± 0.48 0.03 ± 0.44 0.02 ± 0.43
Mag, 5 sec - 0.04 ± 0.50 0.07 ± 0.45 0.07 ± 0.48 0.07 ± 0.43 0.06 ± 0.42

Location - 33.6 ± 17.9 32.1 ± 21.4 32.5 ± 18.7 18.8 ± 13.6 21.1 ± 16.8

PGA 0.11 ± 0.30 0.09 ± 0.35 0.08 ± 0.37 0.06 ± 0.29 0.10 ± 0.28 0.03 ± 0.30

Table 2.1: Mean ± standard deviation of error distributions used by error model.

(b) 1 second (c) 2 seconds (d) 12 seconds

Mean Observed Error 0.05 ± 0.25 -0.05 ± 0.25 0.13 ± 0.26

Predicted Error, 20km -0.09 ± 1.38 -0.20 ± 1.36 -0.18 ± 1.37
Predicted Error, 50km -0.13 ± 0.77 -0.11 ± 0.56 -0.11 ± 0.64
Predicted Error, 100km -0.01 ± 0.39 -0.02 ± 0.38 0.01 ± 0.37

Table 2.2: PGA Errors for Example Event, 26 July, 2003
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Chapter 3 
 
Development of the ElarmS Methodology 
 
 
 
This chapter has been published in Soil Dynamics and Earthquake Engineering  
as “Development of the ElarmS methodology for earthquake early warning: Realtime 
application in California and offline testing in Japan”,  
by Brown, Allen, Hellweg, Khainovski, Neuhauser and Souf, 2011. 
 
 
 
Preface 
The ElarmS development described in this chapter required considerable effort by all 
members of the Berkeley Seismological Laboratory EEW group. Consequently this 
chapter, and the associated Soil Dynamics and Earthquakes Engineering paper, 
represents work done by the entire group. The dissertation author, Holly Brown, wrote 
the chapter and compiled the figures, and was individually responsible for the research 
pertaining to system latencies and testing ElarmS in Japan, including the subsequent 
upgrade of the location algorithm from two dimensions to three.  
 
 
 
3.1 Introduction 
Earthquake early warning (EEW) systems are algorithms that detect the initial P-waves 
from an earthquake, rapidly estimate the location and magnitude of the event, and then 
predict subsequent ground shaking in the surrounding region. EEW systems offer the 
potential for a few seconds to a few tens of seconds warning prior to hazardous ground 
shaking: enough time for individuals to get to a safe location, perhaps under a sturdy 
table, for shutdown of utilities, slowing of trains, and other automated steps to reduce 
hazards from ground shaking. 
 
In July 2009, the California Integrated Seismic Network (CISN) completed a three-year 
investigation into the viability of an EEW system in California. Three algorithms were 
expanded, tested, and compared during the study: Onsite, a single-station method that 
uses τc and Pd (Böse, et al., 2009), Virtual Seismologist, a network-based method that 
uses peak amplitudes and Bayesian  statistics (Cua, et al., 2009), and ElarmS, a network-
based method that uses τpmax and Pd/v (Allen, et al., 2009).  
 
The goal of the three-year project was to determine whether EEW is feasible in 
California. Results from each algorithm were continuously reported to a central database 
run by the Southern California Earthquake Center (SCEC) for analysis. By the end of the 
three years, all three algorithms had successfully predicted ground shaking before it was 
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felt for many earthquakes in the state. At the end of the study the CISN determined that 
EEW is feasible, potentially desirable, and within reach for California. In August 2009 a 
second three-year study was initiated, to integrate the three test algorithms into a single 
prototype EEW system and provide realtime warning to a small group of test users by the 
end of the study in summer 2012. 
 
Here we delineate the methodology, progress, and results of the ElarmS algorithm, which 
is now an integral part of the forthcoming prototype CISN EEW system. The ElarmS 
algorithms for magnitude and location estimation were developed offline with two 
datasets of events from Northern and Southern California. Those algorithms are now used 
in realtime, continuously processing waveforms from throughout the state of California 
and producing predictions of ground shaking within seconds of event detection. A 
separate dataset of events from Japan was processed offline to test ElarmS’ performance 
for large events. From the Japan results we developed an error model which can be used 
in realtime to estimate the uncertainty in any ElarmS prediction. 
 
3.2 Development and Methodology 
3.2.1 Overview 
Earthquake Alarm Systems, or ElarmS, is a network-based EEW system. The algorithm 
detects P-wave arrivals at several stations around an event epicenter and uses the 
amplitude and frequency content of the P-wave to rapidly estimate the magnitude and 
hypocenter of the event. Estimates from several stations are combined to improve 
accuracy and minimize the chance of a false alarm. ElarmS then applies the estimated 
magnitude and location to CISN ShakeMap regional ground motion prediction equations 
(GMPEs) to produce a realtime prediction of impending ground shaking. Predictions 
above a certain threshold prompt an automatic alert message that can be sent to users. 
 
The ElarmS algorithm is divided into a waveform processing module and an event 
monitoring module. The waveform processing module analyzes raw waveforms from all 
contributing stations, detects P-wave arrivals, and calculates the necessary ElarmS 
parameters: predominant period, peak amplitudes, signal-to-noise ratio (SNR), peak 
ground acceleration and velocity (PGA and PGV), and trigger times. These parameters 
are then passed to the event monitor, which associates the triggers into an event, 
estimates the event location, estimates the magnitude, and predicts ground shaking. As 
additional stations record P-wave arrivals, the waveform processing module passes their 
parameters to the event monitor, which includes them into the event analysis (Allen, 
2007; Allen, et al., 2009).  
 
3.2.2 Location 
Event location is estimated by a four-stage algorithm, defined by the number of station 
triggers. When a single station triggers, the event is located directly beneath the station, at 
a depth of 8km. When two stations have triggered, the event is located between them 
based on arrival times, again at a depth of 8km. When three stations have triggered, 
ElarmS uses a two-dimensional grid search at a depth of 8km to determine the hypocenter 
and origin time that minimizes arrival time residuals. Finally, once four or more stations 
have triggered, ElarmS performs a three-dimensional grid search, with depth intervals 
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every 10km, to estimate the hypocenter and origin time that minimizes arrival time 
residuals. In California, most events occur at depths of 5-15 km and the average depth is 
8km (Hill, et al., 1990). Rather than determining depth, ElarmS sets the depth of all 
California earthquakes to 8km. When processing events in Japan, all four stages are used 
including the depth determination. 
 
3.2.3 Magnitude 
ElarmS was originally developed from an empirically observed relationship between 
maximum predominant period, τpmax, and final event magnitude (Allen, 2004; Allen and 
Kanamori, 2003; Lockman and Allen, 2005; Olson and Allen, 2005). For any vertical 
channel (broadband HHZ, or strong motion HLZ, HNZ), the predominant period time 
series is defined recursively by: 
 τp,i = 2π (Xi/Di)½ 

where X = αXi-1 + xi
2  and Di = αDi-1 + (dx/dt)i

2. The constant α is a smoothing factor equal 
to 1 - dt, where dt is the sample interval, and xi is the ground velocity of the last sample. 
Acceleration waveforms are integrated to velocity first, and all waveforms are filtered 
with a causal 2-pole, 3-Hz, low-pass Butterworth filter. τpmax is then the maximum 
observed τp

 value during the first four seconds of P-wave arrival. 
 
To determine the empirical scaling relations, all τp

max values for a given region are plotted 
against the final magnitude of each event. A least squares fit to the data produces the 
scaling relation, which is then used in realtime to estimate magnitude (see section 3.1). 
 
In 2007 ElarmS was updated to utilize a second P-wave parameter, the peak amplitude 
(Wurman, et al., 2007). As before, vertical-component waveforms are filtered with a 3Hz 
low-pass Butterworth filter. Peak amplitudes observed during the first four seconds of P-
wave arrival are scaled to an epicentral distance of 10km and compared to the final 
catalog magnitude for the event. A least squares fit to the data provides a scaling relation 
for the region. Note that the peak amplitude scaling relations are dependent on the 
epicentral distance of the amplitude observation. In Northern California, peak 
displacement is used for broadband (HH) instruments and peak velocity is used for strong 
motion (HL and HN) instruments. Peak displacement has a theoretically longer period 
signal and thus less high frequency noise than peak velocity, but numerically integrating 
the acceleration signal twice (from acceleration to velocity, and again from velocity to 
displacement) introduces errors. We found that for acceleration instruments in Northern 
California, peak velocity provides a more robust scaling relation than does peak 
displacement. In Southern California and Japan, peak displacement produced the 
strongest scaling relation for all instruments, despite the double integration from 
acceleration. In general, we refer to the peak amplitude scaling relations as Pd/v with the 
understanding that we may use Pd or Pv for any given site. 
 
Although the scaling relations for τp

max and Pd/v are determined using four seconds of P-
wave arrival, waiting for a full four seconds of P-wave to be available during realtime 
processing wastes valuable seconds of potential warning time. Instead ElarmS begins to 
apply the scaling relations and estimate magnitude as soon as a single station has 
observed a single full second of P-wave arrival (the first half-second is discarded). As 
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additional seconds of P-wave become available, ElarmS recalculates τp
max and Pd/v 

accordingly. Since both τpmax and Pd/v are the maximum or peak values, they can only 
increase with additional seconds of data. The initial one-second magnitude estimate is 
therefore always a minimum estimate.  
 
To ensure that early arriving S-waves at near-field stations do not interfere with the 
magnitude estimate which is P-wave based, ElarmS also utilizes a simple P/S filter, based 
on an S-P moveout of 8km/s (with a minimum S-P time of 1 second, assuming most 
events are 8km deep). The S-P time is estimated at each station given the event location 
and the P-waveform is only used up to the S-wave arrival.  One potential drawback of 
this filter is that location errors may cause valid P-wave data to be discarded as 
misidentified S-waves.  
 
For each triggering station, τpmax and Pd/v are scaled separately to create two independent 
estimates of magnitude. The estimates are then averaged to form a single event 
magnitude for that station. As additional stations report P-wave triggers, their magnitude 
estimates are averaged into the event magnitude, to provide an increasingly accurate 
description of the event as time passes. 
 
3.2.4 Ground Motions 
Once location and magnitude have been estimated for an event, ground motion is 
predicted at each triggered station by applying the location and magnitude to CISN-
defined ShakeMap GMPEs for the region (Wald, et al., 1999a). The resulting “AlertMap” 
displays predicted ground shaking in the familiar ShakeMap format, i.e. a map of 
predicted shaking intensity. As peak ground shaking is observed at individual stations, 
the observations are integrated into the shaking intensity map. ElarmS incorporates a bias 
correction by scaling the GMPE up or down to best-fit the available observations. 
Eventually, when all stations have reported peak ground shaking, the AlertMap looks 
much the same as the post-event ShakeMap.  
 
The ElarmS algorithm has been tested with datasets from Northern California, Southern 
California, and Japan (Allen, 2006; Allen, 2007; Allen and Kanamori, 2003; Allen, et al., 
2009; Brown, et al., 2009; Lockman and Allen, 2005; Olson and Allen, 2005; Tsang, et 
al., 2007, Wurman, et al., 2007). Each test dataset provided regional scaling relations for 
τp

max and Pd/v, and utilized GMPEs specific to that location. Most recently ElarmS has 
been adapted to run in realtime throughout the state of California.  
 
3.3 Application of ElarmS to California 
3.3.1 Scaling and GMPEs 
Offline tests of California earthquake datasets have produced separate scaling relations 
for Northern and Southern California events (Tsang, et al., 2007; Wurman, et al., 2007). 
The magnitude scaling relations are determined empirically by comparing observed τpmax 
and Pd/v values to final catalog magnitude for a dataset of test events, with as wide a 
range of magnitudes as possible. Once determined, the scaling relations are used in 
realtime to estimate event magnitude, based on realtime observations of P-wave 
frequency and amplitude. 
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For northern California, Wurman, et al., analyzed a dataset of 43 events recorded by 
Berkeley Digital Seismic Network (BK) and Northern California Seismic Network (NC) 
seismometers (Figure 3.1) between 2001 and 2007, with magnitudes ranging from 3.0 to 
7.1. The analysis resulted in the following scaling relations: 
 Mw = 5.22 + 6.66*log10(τp

max)           for τp
max on HHZ, HLZ, HNZ channels 

 Mw = 1.04*log10(Pd) + 1.27*log10(R) + 5.16   for Pd on HH channels 
 Mw = 1.37* log10(Pv) + 1.57*log10(R) + 4.25  for Pv on HL channels 
 Mw = 1.63*log10(Pv) + 1.65*log10(R) + 4.40   for Pv on HN channels 
where R is the epicentral distance to the station. The τpmax and Pd relations are shown in 
Figure 3.2ab. These scaling relations are now used by ElarmS for all events north of the 
Gutenberg-Byerly line (shown on Figure 3.1 as the line between regions mSA/eCAn and 
BB/eCAs). 
 
For southern California, Tsang, et al., analyzed a dataset of 59 earthquakes recorded by 
the Southern California Seismic Network (CI) between 1992 and 2003, with magnitudes 
ranging from 3.0 to 7.3. The analysis resulted in the following scaling relations (Figure 
3.2cd):  
 Mw = 6.36 + 6.83*log10(τp

max)  for τp
max on HHZ, HLZ, HNZ channels 

 Mw = 1.24*log10(Pd) + 1.65*log10(R) + 5.07 for Pd on HH, HL, HN channels 
These scaling relations are used by ElarmS for all events south of the Gutenberg-Byerly 
line. 
 
Ground motions in Northern and Southern California are predicted using the Boatwright, 
et. al., GMPE, as preferred by CISN ShakeMap version 3.2: 
 log10(PGA, PGV) =  A + B*(M-Ms) - log10(Rg) + k*R + Bv*log10(Vs/Va)  
where M is event magnitude, Vs is a site correction, R = √(Re

2 + d2), Re is epicentral 
distance, d is depth, and Rg = R, if R≤R0, or Rg = Ro*(R/R0)g, if R>R0. Remaining 
coefficients are specific for large events (M>5.5) or small events (M≤5.4), and are shown 
in Table 3.1. 
 
3.3.2 Realtime Processing 
ElarmS was adapted to run in realtime in Northern California in October 2007, and 
expanded statewide in November 2008. The system now processes waveforms from all 
realtime-capable stations in the state: a total of 603 velocity and accelerations sensors at 
383 sites (Figure 3.1). The ElarmS waveform processing module is distributed among 
three regional processing centers, which receive the continuously streamed waveforms. 
Data from the Berkeley Digital Seismic Network (BK) are streamed to UC Berkeley, data 
from the Northern California Seismic Network (NC) and from some stations in the USGS 
Strong Motion Network (NP) are streamed to USGS Menlo Park, and data from the 
Southern California Seismic Network (CI), the Anza Network (AZ), and the remaining 
NP stations are streamed to Caltech/USGS Pasadena. At these regional processing 
centers, the waveform processing module distills the waveforms to their essential 
parameters: trigger times, peak predominant period, peak amplitudes (acceleration, 
velocity, and displacement), peak ground shaking observations, and signal-to-noise ratio. 
These parameters are then forwarded to UC Berkeley, where a single event monitor 
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integrates data from all of California to identify and analyze earthquakes in realtime. 
When an event is determined to be above a certain magnitude threshold, an alert message 
can be sent to users notifying them of the event location, origin time, estimated 
magnitude, and number of triggers. Currently alerts are sent to the authors and the SCEC 
database for CISN EEW analysis. 
 
3.3.3 System Latency 
The total ElarmS processing time, from when a P-wave arrives at a station until ElarmS 
outputs event information, can be divided into two types: telemetry of data and computer 
analysis time. Data telemetry includes the time while a station collects data into a packet 
for transmission, transit from individual stations to the regional processing centers where 
the waveforms are processed, and transit time from the processing centers to UC 
Berkeley where the single event monitor is located. Stations transmit data to the 
processing centers by frame-relay, internet, private intranet, radio, or microwave, 
depending on the station. The processing centers transmit data to Berkeley by internet or 
private intranet.  
 
The primary source of telemetry latencies is the packetization of data by station data 
loggers. A data logger will not send its data to the waveform processing module until the 
data packet is full. Packet sizes are usually of a configurable byte size, but many station 
data loggers are currently set for packet sizes equivalent to 4-6 seconds of data. Manually 
reconfiguring these data loggers to require packets equivalent to 1-2 seconds of data 
would greatly decrease the delays. In addition, all BK data loggers and most CI data 
loggers will be upgraded to data loggers with short 1 second packets in the next two years 
with recently provided US Federal stimulus funding as part of the American Recovery 
Reinvestment Act (ARRA). 
 
Figure 3.3a shows the data latencies for transmission to the waveform processing site  by 
each seismic network. These delays are the difference in seconds between when a P-wave 
arrives at a station and when the waveform packet is received by the regional processing 
center. They are thus composed of the time for a packet to fill and the time in transit to 
the regional processing center. The median latencies for each network are shown in Table 
3.2. The median latency across all networks is 5.23 seconds. Each histogram is 
characterized by an extended tail at the high latencies (the figure is truncated at 20 
seconds for clarity, but the distributions continue to higher latencies, up to several 
hundred seconds, for a small number of stations). The tail indicates stations that are 
drastically delayed, due to poor telemetry availability, temporary telemetry failure or 
station disruption.  
 
NC has the fastest median of 2.5 sec due to a large number of NC station data loggers 
configured for a packet size equivalent to 1-2 seconds of data. However there is a 
substantial tail to the distribution, indicating that the remaining stations are significantly 
slower. The Gaussian-like distribution for BK, with a median of 6.2 seconds, illustrates 
the nearly uniform hardware, software and telemetry configuration for all stations in the 
network, with few excessively delayed stations. CI uses much the same equipment as BK 
and shows a similar distribution with a slightly faster median of 5.2 sec. NP is a little 
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slower with a median of 7.4 sec. The NP distribution shows a peak around 2 or 3 seconds, 
similar to NC, but a multitude of slower stations add a significant tail to the distribution, 
increasing the median. AZ has the highest median latency, 9.3 seconds, which is due to 
an extra telemetry step as the data is forwarded through the Scripps Oceanographic 
Institute before arriving at the Caltech regional processing center. 
 
Figure 3.3b shows the delays by data logger type, independent of network. Again, the 
delays are the difference between when a P-wave arrives at a station and when the 
waveform packet is received by the regional processing center. The distribution statistics 
are shown in Table 3.2. The fastest data logger is the K2 used at many of the USGS sites 
and designed to send 1 sec data packets.  The Quanterra Q330 comes second, again due 
to the fact that it sends out 1 sec data packets, although there is a wider range of the total 
telemetry latencies which is likely due to software discrepancies between the different 
networks. The Berkeley processing software was designed for the older model data 
loggers and has not yet been updated to accommodate the Q330. This software will be 
upgraded by Spring 2010. The older Quanterra data loggers (the Q730, Q680, Q980 and 
Q4120) are slower.  In the network upgrade that is now underway the majority of these 
older and slower data loggers are being upgraded to Q330s.  The combined effect of new 
dataloggers and revised software will reduce the latencies at these stations by 3 to 5 sec.  
 
3.3.4 Alert Criteria 
The station distribution in California is not uniform (Figure 3.1). Not surprisingly, the 
performance of a network-based system is directly related to the density of the network. 
Accuracy improves when more stations contribute to an event estimate, but potential 
warning time is lost while waiting for those stations to trigger, especially when the 
stations are far apart. ElarmS performs best in the heavily instrumented regions around 
Los Angeles, San Diego, and San Francisco (LA, sSA, SFBA in Figure 3.1). In these 
regions the mean station separation is only 20km, and the system often receives two or 
three triggers in the first second after an earthquake begins. In regions with lower station 
density the system must wait, as valuable seconds pass, until enough stations have 
reported P-wave arrivals. Regions with less dense instrumentation also suffer from higher 
false alarm rates, as there are fewer stations to contradict a false trigger. We therefore 
tailor the alert requirements to each region.  
 
In regions SFBA, LA and sSA, where inter-station spacing is approximately 20km, the 
system requires at least 4 triggers within 30 km of the epicenter before an alert can be 
sent for an event. In southeastern California (eCAs), the Big Bend region (BB), the 
middle San Andreas (mSA), and the northern San Andreas (nSA), where stations are 
separated by 20-100km, we require 5 or more stations within 100km to trigger before an 
alert is generated. And in the Mendocino Triple Junction (MTJ), northeastern California 
(eCAn), and the Channel Islands (cIS), where stations are more than 100km apart, we 
require 10 or more stations (at any epicentral distance) to trigger. These regional 
boundaries and requirements continue to be refined as we monitor the realtime system. 
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3.3.5 False and Missed Alerts 
Figure 3.4 shows all detected, false, and missed alerts with magnitude 3 or greater which 
occurred in Northern California during a ten-week test period from 8 August 2009 and 20 
October 2009. A false alert is defined as an ElarmS event that meets the alert criteria for 
its region but does not correspond to a an event in the Advanced National Seismic 
System (ANSS) catalog. A missed alert is an ANSS M>3 event for which no ElarmS 
alert message was issued; ElarmS may have not detected the event, or it may have 
detected the event but not satisfied the criteria required to issue an alert. For this ten-week 
test period there were 63 real events M>3. ElarmS detected 45 of them and missed 18. 
Eleven of the missed events were part of an aftershock sequence described below. 
ElarmS also sent four false alert messages for nonexistent events. 
 
The false and missed alarm rates are related to two factors: the station density, and 
whether an earthquake is occurring during a swarm such as during an aftershock 
sequence.  In the SFBA region, where inter-station spacing is approximately 20km, there 
were 8 detected events and no false or missed alerts for this time period (Figure 3.4). In 
mSA there were 3 detected events and 1 false alert. In nSA there were 8 detected events, 
1 false alert and 2 missed alerts. Performance is moderate in the mSA and nSA regions as 
the station spacing is 20-100km. 
 
In the eCAn and eCAs regions performance is much poorer due to the much lower station 
density. In eCAn there were two missed alerts and one false alert. In the eCAs region in 
the lower right of the map there is a cluster of green (detected) and red (missed) squares. 
These represent two M5 events on October 1st and 3rd, and their aftershock sequences. 
ElarmS successfully detected the M5.1 event on October 1st, but missed the M5.2 event 
two days later. It caught 20 out of 31 total aftershocks of magnitude 3 or greater. ElarmS 
missed the second large event due to increased background noise and concurrent 
aftershock activity from the first event.  
 
This illustrates the challenge of defining optimal alert criteria for each region. Criteria 
which are too strict (requiring too many stations to trigger) may fail to be met by a 
moderate size event, resulting in no alert message even though the event is real, or will 
slow down the time until an alert is issued. Criteria which are too loose (requiring too few 
stations) may be met by unrelated, erroneous triggers, resulting in an alert message when 
there is no real event.  As with all associators the performance is also reduced during 
swarms of seismicity or aftershock sequences.  Improvements to the associator scheme 
specifically for early warning applications would be beneficial.   
 
3.4 Sample Events 
We illustrate ElarmS performance in California with three sample events from different 
regions of the state, all processed by the realtime system. 
 
3.4.1 Mw5.4 Alum Rock, SFBA Region 
Figure 3.5 shows the Mw5.4 Alum Rock event, which occurred on 30 October, 2007. This 
was the largest event in the San Francisco Bay Area since the 1989 Loma Prieta Mw6.9 
event. At the time of the Alum Rock earthquake, ElarmS had been running in realtime for 
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less than a month and used only stations from the BK network. The event begins in 
Figure 3.5a when two stations trigger simultaneously. The location is estimated between 
the stations, at a depth of 8km. One second later (Figure 3.5b), the magnitude is estimated 
at 5.2, using the observed τp

max and Pd/v values from the two triggered stations. A third 
station triggers and the location is triangulated based on the arrival times at the three 
stations. The estimated location and magnitude are applied to local GMPEs to produce a 
prediction of ground shaking around the epicenter. The mean errors in the PGA and PGV 
predictions are -0.2 and -0.3, respectively, at this time. PGA and PGV errors are the 
difference of the logarithm of the observed minus the predicted ground motions; a factor 
of two difference between the predicted and observed PGA corresponds to an error of 
0.7, and a factor of 10 to an error of 2.3. One second later (Figure 3.5c), the τp

max and Pd/v 
values from the third station are incorporated, and the magnitude estimate rises to M5.8. 
The errors in PGA and PGV change to 0.0 and -0.4. One second later (Figure 3.5d), a 
fourth station triggers, the location is adjusted, and the magnitude estimate rises to M5.9. 
The predictions of peak ground shaking are adjusted to account for the new location and 
magnitude estimates and a second peak ground motion observation. The mean PGA and 
PGV errors change to 0.1 and -0.2. As additional seconds pass, more stations trigger and 
their P-wave parameters are incorporated into the evolving estimates of location and 
magnitude, and the predictions of ground shaking. Figures 3.8a and 3.8b show the errors 
in the magnitude and location estimates as time progresses. 
 
ElarmS uses a bias correction to shift the GMPEs up or down to match available ground 
motion observations. In Figure 3.5c the AlertMap shows a decrease in expected ground 
motions, despite the increase in magnitude. In this case there is only one observation 
available (represented by the light blue diamond just southeast of the epicenter), and it 
lowers the predictions for the whole region until more observations are available in the 
next second. Iervolino, et al., found that GMPEs contribute significantly more error to 
EEW predictions of ground shaking than do magnitude or location estimates. This is due 
to the inherent variability in peak ground motion at a given location with respect to even 
the best fitting attenuation relations. However, Iervolino, et al., also found that ground 
motion predictions stabilize as more information is incorporated. While the inclusion of a 
single ground motion observation may increase the error in the AlertMap (Brown, et al., 
2009), as more observations are included their individual errors cancel each other out. 
Future versions of ElarmS will wait until three or more ground motion observations are 
available before including them in the prediction, to avoid the increased uncertainty 
associated with using just one or two observations. 
 
Figure 3.5e shows the CISN ShakeMap published after the Alum Rock event. From the 
time of the first magnitude estimate, one second after the first P-wave detection, the 
predictive AlertMap (Figure 3.5b) is a close match to the ShakeMap. Figure 3.5f shows a 
seismogram recorded in San Francisco during the Alum Rock earthquake. The timeline 
denotes the times at which the data used in (a),(b),(c), and (d) was available. At the time 
ElarmS applied a 15 second buffer to the incoming waveforms, to reduce latency 
differences between stations. Despite the 15 second buffer, the data used to create (b-d) 
was available four to two seconds before the S-waves reached San Francisco and peak 
ground shaking began.  This event represented the first “proof-of-concept” event for the 
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realtime ElarmS system as it illustrates that hazard information is available before 
shaking is felt. 
 
3.4.2 Mw5.4 Chino Hills, LA Region  
Figure 3.6 shows the Mw5.4 Chino Hills event, which occurred on 29 July, 2008. At the 
time ElarmS was midway through the conversion to statewide coverage, and was 
receiving data from only 15 southern California stations. ElarmS was still able to estimate 
magnitude, location and ground shaking using only the three stations within 100km of the 
epicenter. When the first station triggered, the event was located directly beneath the 
station at a depth of 8km. The observed τp

max and Pd/v values were used to estimate a 
magnitude of 5.4. From that location and magnitude, local GMPEs were used to predict 
peak ground shaking in the region (Figure 3.6a). After a second station triggered, the 
location was adjusted between the stations based on arrival times, at a depth of 8km. The 
τp

max and Pd/v magnitudes for the second station were averaged together with those from 
the first station, producing a new event magnitude of M5.8. The new location and 
magnitude were used to update the predictions of ground shaking (Figure 3.6b). Figure 
3.6c shows the CISN ShakeMap for comparison. The ShakeMap is published after the 
event, using observations from all available stations. The ElarmS predictive AlertMap is 
reasonably similar to the ShakeMap, considering ElarmS used data from only two 
stations (the third and final available station triggered six seconds later and did not 
significantly change the AlertMap). Figures 3.8c and 3.8d show the progression of 
magnitude and location errors with time. 
 
3.4.3 Mw4.4 Lone Pine, eCAs Region 
The Lone Pine Mw4.4 occurred on October 3, 2009, in the eCAs region. In this region the 
stations are separated by 20-100km, so ElarmS requires at least 5 stations to trigger 
before issuing an alert. In Figure 3.7a the event is detected when two stations trigger 
simultaneously, four seconds after the event origin time. One second later (3.7b) the 
event magnitude is estimated at 4.0. Four more seconds pass before a third station 
triggers, at which point the location is adjusted and the magnitude estimate is raised to 
4.1 (3.7c). The thin station coverage necessitates waiting longer in this region than in the 
previous examples. The five station requirement for alert issuance is not met until two 
seconds later (3.7d), eleven seconds after the event begins. The fourth and fifth stations 
did not appreciably change the magnitude, location, or ground motion predictions in this 
case, but they ensured that the event was real (Figure 3.8ef). 
 
3.5 Application of ElarmS to Japan 
3.5.1 Scaling and GMPEs 
While ElarmS has been tested with many datasets in California, there are few recent, 
well-recorded, large earthquakes in California. Since an early warning system is designed 
specifically to warn people of large events, we are especially interested in its performance 
for these events. Thus we tested the system with a dataset of large events from Japan 
(Brown, et al., 2009). The Japanese events also provided insight into ElarmS’ 
performance in a subduction zone environment.  
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The dataset included 84 Japanese events that occurred between September 1996 and June 
2008 (Figure 3.9). The magnitudes ranged from 4.0 to 8.0, with 43 events of magnitude 
6.0 or greater. The largest event was the M8.0 Tokachi-Oki earthquake of 26 September, 
2003. The events were recorded by Japan’s Kyoshin Net (K-NET) strong-motion seismic 
network. K-NET consists of 1,000 digital strong motion seismometers, distributed across 
Japan with approximately 25km spacing. Each station is capable of recording 
accelerations up to 2,000 cm/s

2, with a sampling frequency of 100Hz and a dynamic range 
of 108dB. 
 
The events were processed offline, using all available data, using the same methodology 
as described above. The first step is to determine scaling relations between the 
predominant period and peak amplitudes of the P-waves and the magnitude for the event 
dataset.  The observed scaling relations for Japan are shown in Figure 3.2ef and are: 
 MJMA = 4.76*log10(τp

max) + 5.81 
 MJMA = 5.82 + 1.52*log10(Pd) + 1.39*log10(R) 
where MJMA is the JMA catalog magnitude and R is the epicentral distance. The 
predominant periods observed in Japan are of similar values to those of Northern and 
Southern California, but the best-fit slope is steeper in Japan.  The peak amplitude values 
are higher than those in Northern California and lower than those in Southern California, 
with a slightly shallower slope in Japan. 
 
For the prediction of peak ground shaking, we used the GMPEs that the global ShakeMap 
system uses for Japanese events. The global ShakeMap GMPEs use either the Boore, et 
al., or the Youngs, et al., model, depending on depth and magnitude of the event. For 
events shallower than 20km or smaller than magnitude 7.7, the relations are defined by 
Boore, et al., with numerical coefficients specified for reverse faulting: 
 ln(PGA) = -0.117 + 0.527*(M-6) + 0.778*ln(R)   
where R is defined by  
 R = (Rjb

2 + h2)½ 
Rjb is the closest distance in km to the surface projection of the fault and h is a model 
coefficient representing depth. We substitute the epicentral distance for Rjb.  
 
For events deeper than 20km or greater than magnitude 7.7, global ShakeMap and 
ElarmS use the GMPEs defined by Youngs, et al.: 
      ln(PGA) = 0.2418 + 1.414*M - 2.552*ln(Rjb + 1.7818 exp(0.554*M)) + 0.00607*h 
where again we substitute the epicentral distance for Rjb. 
 
3.5.2 Performance for Large Magnitudes 
Once the necessary scaling relations had been developed all 84 events were processed in 
a simulated realtime environment to provide ElarmS predictions of ground shaking.  We 
assumed zero data latency and processed data sequentially according to the time-stamp 
on the waveform data. After the events were processed we analyzed ElarmS performance 
for different magnitude ranges. Figure 3.10 shows the resulting ElarmS magnitude error 
histograms. The blue histogram is the magnitude error for all events in the Japanese 
dataset, with magnitudes from 4.0 to 8.0. The mean error for all events was 0.0 
magnitude units, with a standard deviation of 0.4. The green histogram is the magnitude 
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error for all events magnitude 6.0 or greater (of which there are 43). The mean error for 
this distribution is again 0.0, with a standard deviation of 0.5. This is a similar 
distribution statistically to that for all events. The red histogram is the magnitude error for 
events magnitude 7.0 or greater (of which there are seven in this dataset). Of the seven 
events M>7, four of the magnitudes are underestimated, two are overestimated, and one 
is accurately estimated. The mean error for this distribution is  -0.2 magnitude units, with 
a standard deviation of 0.5. This lower mean error means that ElarmS underestimates the 
magnitude of the largest events by 0.2 magnitude units on average. An underestimation 
of 0.2 magnitude units is within our tolerance for ElarmS magnitude estimates, but we 
recognize that the magnitude algorithm may need to be adjusted to prevent 
underestimation in the future. A first step may be to weight the average of τp

max and Pd/v 
in favor of τp

max for high magnitude events, since τp
max is less prone to saturation effects at 

the highest magnitudes (Brown, et al., 2009).  
 
3.5.3 Methodological Improvements 
The Japanese dataset provided some methodological challenges. The majority of the 
events were offshore. The resulting limited azimuthal coverage (all stations are onshore) 
slowed down our location algorithm, requiring more station trigger times and therefore 
more seconds to produce a reasonable epicentral estimate. Many of the events were also 
deep. The original California location algorithm assumed a depth of 8km for all events, 
and found the hypocenter on a 2D grid at that depth. For the subduction zone events we 
expanded the algorithm into a 3D grid search, finding hypocenters at depths down to 
80km, in 10km increments. Figure 3.11 shows a histogram of location estimate errors 
using the new 3D grid search. The histogram includes all hypocentral location estimates 
for each event, from the initial 1-trigger estimate to the final estimate using all available 
stations. The median location error, across all events and all number of triggers, is 11km.  
 
3.5.4 Error Model 
As part of the Japan dataset testing, we developed an error model similar to that of 
Iervolino, et al., to analyze the errors in ElarmS’ output (Brown, et al., 2009). We 
separated the algorithm into its location, magnitude, and ground motion steps, and 
isolated the errors produced during each step. Errors were calculated by comparing the 
estimated location or magnitude to the catalog location or magnitude, and the predicted 
ground shaking at all stations and times prior to recording ground shaking to the eventual 
observation of peak ground shaking at that station. Predictions of peak ground shaking at 
stations after the peak shaking had occurred were not included in the error analysis. The 
errors of each component of the system are shown in Table 3.3. 
 
The accuracy of any given step is dependent on the amount of data available. The error in 
the location estimate, for example, is dependent on the number of stations reporting P-
wave arrivals. The error in the magnitude estimate is dependent on both the number of 
stations providing information and the number of seconds of P-wave that have arrived at 
each station. The error in the prediction of peak ground shaking is dependent on the 
number of stations whose observations of peak ground shaking have been used to adjust 
the prediction. The “0 stations” error is when no stations have yet recorded peak ground 
shaking, and the prediction of ground shaking is based on the GMPEs alone. 
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The errors calculated (Table 3.3) were then used to produce an error model for ElarmS’ 
final prediction of ground shaking, given any combination of inputs. If there were no 
errors at all in the system, then the ElarmS prediction of ground shaking would be based 
on the same magnitude and location that the catalog uses. Since ElarmS uses the global 
ShakeMap GMPEs, an error-free ElarmS AlertMap should look much like the global 
ShakeMap. Therefore, the error contributed by ElarmS is the difference between the 
ShakeMap calculation of ground shaking and the AlertMap prediction of ground shaking. 
The ideal, error-free output is defined by the GMPEs for an event. For example, for an 
event shallower than 20km depth with a magnitude less than 7.7, the error-free output 
would simply be the Boore, et al., GMPE.  For peak ground acceleration (PGA): 
 ln(PGA)ideal = -0.117 + 0.527 * (M-6) + 0.778 * ln(R)       Ideal, error-free output 
where M is magnitude and R is the distance from the event epicenter to the location 
where PGA is being predicted.  
 
We then introduce errors into the calculation, using the error distributions we observed 
for our Japan dataset. 
 ln(PĜA) = -0.117 + 0.527*(M+εM – 6) + 0.778*ln(R ± εR) + εAtt  ElarmS output 
where M is the catalog magnitude, R is the epicentral distance, and εM, εR, and εAtt  are the 
errors in magnitude, location, and GMPEs, respectively. 
 
The difference between PGAideal and PĜA is the error in our final prediction of ground 
shaking.  
 εPGA = ln(PGA)ideal – ln(PĜA)     Error 
 
This represents the total error in the entire algorithm. εPGA is a unitless value; a factor of 
two difference between the ideal and estimated PGA corresponds to an error of 0.7, and a 
factor of 10 to an error of 2.3.  
 
The errors for each step (εM, εR, εAtt) are dependent on the quantity of data included (the 
number of trigger times, the number of τp

max and Pd/v values, etc.) and vary within the 
probability distributions defined in Table 3.3.  Thus the error model is similarly 
dependent. We calculated εPGA 1000 times for every combination of data inputs, 1086 
combinations, each time choosing the error values by a Monte Carlo simulation based on 
the mean and standard deviation of the error distributions (Table 3.3). The resulting 1000 
values for εPGA are used to create a probability distribution for εPGA given that specific 
combination of data inputs. Figure 3.12a shows three sample εPGA distributions, and 
Figure 3.12b  shows all 1086 εPGA distributions, corresponding to 1086 unique 
combinations of data inputs (number of stations contributing to location estimate, number 
stations contributing to magnitude estimate, number of seconds of P-wave for each 
station, and number of observations of peak ground shaking). The mean errors for all 
εPGA distributions range from -0.2 to 0.2, with a median of 0.0. Standard deviations range 
from 0.3 to 0.6, with a median of 0.4. The standard deviations of all error distributions 
are less than 0.7 meaning less than a factor of 2 error in the PGA prediction.  These 
calculated error distributions are stored in an internal library, accessible during 
processing for realtime estimates of uncertainty in PGA predictions.  
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Finally we analyzed the error contributions of each step of the algorithm separately. By 
assuming zero error in the magnitude estimate, for example, we could remove that error 
contribution from the system and observe how much the 1086 error distributions change. 
In all cases the error distributions remained centered about zero, but the median standard 
deviation decreased, indicating a decrease in the range of errors. Removing the GMPE 
error from the system (by setting εAtt=0) decreased the median standard deviation by 
49%, compared with a decrease of 13% when location error was removed (εR=0) and 5% 
when magnitude error was removed (εM=0) (Brown, et al., 2009).This result confirmed 
that of Iervolino, et al., who demonstrated conclusively that GMPEs contribute the most 
uncertainty to an EEW prediction of ground shaking. Iervolino, et al., also showed that 
predictions of peak ground motions only stabilize when data is included from multiple 
stations. Since an EEW must use GMPEs, the safest recourse is to wait until multiple 
stations are providing data before issuing a prediction of ground motions. As always, 
there is a trade-off of speed versus accuracy in any EEW prediction (Iervolino, et al., 
2009). 
 
3.6 Conclusions  
The three-year CISN project gave us the opportunity to combine the offline development 
of ElarmS in California with the error analysis performed in Japan and produce a 
statewide realtime system. Already we have integrated data from five disparate networks, 
adapted our algorithms to run in realtime using data that is unevenly delayed by 
telemetry, and added the ability to send alert messages within seconds of event detection. 
While improvements to the seismic networks in California would improve ElarmS 
performance, ElarmS has successfully predicted ground shaking for many events even 
with the current network of stations.  
 
There are opportunities for improvement in the next three-year phase of the project. Our 
algorithm continues to struggle with false alarms, especially in the regions with low 
station density. Honing our regional trigger requirements may be the primary step needed 
to reduce the false alarm rate. In addition, the event associator needs to be improved to 
better tolerate aftershock sequences, so that we don’t risk missing a large mainshock due 
to its foreshock or other nearby events. 
 
Data latencies are also a significant problem, claiming much of the potential warning 
time. Some latencies may be reduced by more efficient code design, such as updating the 
BK network software to accommodate the faster Q330 data loggers. Others require 
reformatting individual station data loggers, or upgrading data logger hardware. In the 
next two years ARRA stimulus funding will be used to upgrade many data loggers 
throughout the CISN, reducing latency by 3-5 seconds at these sites. The current 
statistical median latency is 5.2 seconds. With these upgrades we anticipate this will be 
reduced to 2-3 seconds. 
 
We expect many improvements to the ElarmS code and the CISN networks during the 
coming three years. Learning from the realtime experience of the last three years, the 
ElarmS, VS, and Onsite methodologies will be integrated into a single prototype system. 
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New code is being written to reduce processing delays and hardware upgrades will 
reduce data transmission latencies. The CISN is currently identifying a small group of 
about 10 test users who will soon start to receive alerts from the new prototype system, 
called the CISN ShakeAlert System. 
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Figure 3.1. Realtime seismic stations used by ElarmS in California. Circles are velocity instruments, and crosses are 
accelerometers. Many stations have co-located velocity and acceleration sensors. The grey boxes indicate regions used 
for alert requirements: Mendocino Triple Junction (MTJ), north San Andreas (nSA), San Francisco Bay Area (SFBA), 
middle San Andreas (mSA), Big Bend (BB), Los Angeles (LA), south San Andreas (sSA), Channel Islands (cIS), east 
California south (eCAs), and east California north (eCAn). The straight line between regions mSA/eCAn and BB/eCAs 
is the Gutenberg-Byerly line dividing northern and southern California. 
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ElarmS−RT: 2009.08.08 - 2009.10.20
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(a) (b)

(c) (d)

Figure 3.7. Example of ElarmS processing for the 3 October 2009 Lone Pine Mw4.4 earthquake. (a) Hypocenter was 
estimated when two stations triggered, 4 seconds after the event began. (b) One second later (OT + 5 seconds) magnitude 
was estimated at 4.0, using P-wave parameters from the two triggering stations. (c) Four seconds later (OT + 9) a third 
station triggered. Location, magnitude, and ground shaking predictions were adjusted. (d) One second later (OT + 11), the 
five station requirement was met and an alert was issued (to the authors) for this event. 46
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Figure 3.8. Magnitude and location error with time for the three California sample events: Alum Rock (a, b), 
Chino Hills (c, d), and Lone Pine (e, f). Horizontal axis is time in seconds since origin time of the earthquake. 
These times include a 15-second buffer for Alum Rock and 20-second buffers for Chino Hills and Lone Pine. 
Vertical axis is error in magnitude estimate (magnitude units) or epicentral location estimate (km). 
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Figure 3.9. Events and stations used in the Japan test dataset. Red circles are events, blue triangles are K-NET 
stations. The red star is the largest event in the study, the M8.0 Tokachi-Oki earthquake of Sept 26, 2003.
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Figure 3.10. Histogram of magnitude errors for Japan dataset. The blue histogram is the distribution 
of magnitude error for all 84 events in the Japan dataset, M4.0 to M8.0. The green histogram is the 
distribution for the subset of 43 events with magnitude 6.0 or greater (up to and including magnitude 
8.0) and overlays the blue histogram. The red histogram, again overlaying the green histogram, is for 
the subset of 7 events with magnitude 7.0 or greater (up to and including magnitude 8.0).
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Figure 3.11. Histogram of errors in location estimate. Each event contributes an initial 
1-trigger estimate, a 2-trigger estimate, and so on until all available stations are included. 
The median error across all estimates, with any number of triggers, is 11km. 
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Figure 3.12. Error model distributions. (a) Three examples, showing best-fit Gaussian distributions for errors in 
ground motion estimation, given various quantities of data input. The red line is the error if two stations contribute to 
a location estimate, two stations contribute to the magnitude estimate (one using 1 second of P-wave data, one using 
2 seconds), and zero stations report PGA observations. The green line is error if three stations contribute to the 
location estimate, two stations contribute to the magnitude estimate (one with 2 seconds of P-wave data, one with 3 
seconds), and one station reports a PGA observation. The blue line is error if five stations contribute to the location 
estimate, five stations contribute to the magnitude estimate (4 with four seconds of P-wave data, one with 3 seconds), 
and three stations report PGA observations. (b)All 1086 error distributions resulting from the error model. Each line 
represents a unique combination of data inputs.
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A B k0 R0 g Ms p Bv Va k
PGA, M>5.5 2.52 0.31 -0.0073 27.5 0.7 5.5 0.3 -0.371 560 k0 * 10(p*(Ms-M))

PGV, M>5.5 2.243 0.58 -0.0063 27.5 0.7 5.5 0.3 -0.371 560 k0 * 10(p*(Ms-M))

PGA, M 5.4 2.52 1 -0.0073 27.5 0.7 5.5 0 -0.371 560 k0

PGV, M 5.4 2.243 1.06 -0.0063 27.5 0.7 5.5 0 -0.371 560 k0

Median Delay (s)
BK 6.2
NC 2.5
NP 7.4
CI 5.2
AZ 9.3

Q330 4.0
Q730 5.5
Q680 6.3
Q980 6.6

Q4120 5.3
K2 1.6

HR24 4.0
R130 9.1

N
et

w
or

k
D

at
a 

Lo
gg

er

0 stations 1 station 2 stations 3 stations 4 stations 5 stations

Mag, 1 sec - -0.4 ± 0.6 -0.3 ± 0.6 -0.4 ± 0.6 -0.4 ± 0.6 -0.4 ± 0.6

Mag, 2 sec - -0.2 ± 0.6 -0.2 ± 0.5 -0.2 ± 0.5 -0.2 ± 0.5 -0.2 ± 0.5

Mag, 3 sec - -0.1 ± 0.5 -0.1 ± 0.5 -0.1 ± 0.5 -0.1 ± 0.5 -0.1 ± 0.5

Mag, 4 sec - 0.0 ± 0.5 0.0 ± 0.5 0.0 ± 0.5 0.0 ± 0.4 0.0 ± 0.4

Mag, 5 sec - 0.0 ± 0.5 0.1 ± 0.4 0.1 ± 0.5 0.1 ± 0.4 0.1 ± 0.4

Location - 34 ± 18 32 ± 21 32 ± 19 19 ± 14 21 ± 17

PGA 0.1 ± 0.3 0.1 ± 0.4 0.1 ± 0.4 0.1 ± 0.3 0.1 ± 0.3 0.0 ± 0.3

Table 3.1. Coefficients for the Boatwright, et al., ground 
motion prediction equation used in California. 

Table 3.2. Median values for the telemetry 
latencies shown in Figure 3.3.

Table 3.3. Parameters of error distributions for magnitude, location, and ground motion.
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Chapter 4 
 
Developing the Second Generation ElarmS Code 
 
 
 
4.1 Introduction 
Earthquake Early Warning (EEW) is a method of recognizing earthquakes in progress 
and sending immediate alerts to surrounding population centers seconds before damaging 
ground shaking begins. Magnitude, location, and origin time are estimated from P-wave 
arrivals at nearby seismic stations. Earthquake Alarm Systems, or ElarmS, is an EEW 
methodology developed at the University of California, Berkeley. ElarmS currently 
operates as part of the larger ShakeAlert EEW project run by the California Integrated 
Seismic Network (CISN). Here we detail the development of the second generation 
ElarmS code, designed to improve speed and accuracy for successful integration with the 
production-grade ShakeAlert system. 
 
4.2 ShakeAlert 
ShakeAlert combines three research early warning systems in California into a single, 
production-grade system to provide warnings to industrial, government, and corporate 
recipients, and eventually to the general public. ShakeAlert is based on three research 
EEW systems: ElarmS at the University of California Berkeley, OnSite at the California 
Institute of Technology, and Virtual Seismologist at ETH Zurich (Böse, et al., 2012). 
Each system has a unique method of trigger association, magnitude estimation, and false 
alarm filtering (Cua, et al., 2009, Böse, et al., 2009, Brown, et al., 2009). By combining 
output from all three systems, ShakeAlert benefits from the strengths of each algorithm 
and minimizes the weaknesses. The ShakeAlert Decision Module receives alerts from 
each algorithm, identifies when algorithms are describing the same event, and combines 
algorithm output into a single summary of each earthquake. The combined event 
information is then sent as a single alert message to users’ computer screens. A popup 
message warns of impending shaking, with an estimated magnitude and an audible 
countdown to the predicted shaking. Since January 2012, ShakeAlert is providing 
prototype warnings to several government and industrial entities in Northern and 
Southern California (Böse, et al., 2012). 
 
4.3 ElarmS Method 
ElarmS is a network-based EEW, developed in California over the last ten years. A 
scaling relation between P-wave frequency (τpmax) and magnitude was empirically 
determined from a calibration dataset of earthquakes, first in southern California (Allen 
and Kanamori, 2003) and then in northern California (Tsang, et al., 2007). Then a second 
set of scaling relations, between P-wave amplitude (Pd) and magnitude, was empirically 
determined, again for northern and southern California (Wurman, et al., 2007). In 2007 
the system was tested offline with a dataset of large earthquakes in Japan (Brown, et al., 
2009), and also expanded to run in realtime throughout California (Allen, et al., 2009). In 
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2009 ElarmS was connected to the ShakeAlert Decision Module for events in the greater 
San Francisco Bay Area (Brown, et al., 2011).  
 
ElarmS consists of two primary parts, a waveform processing module and an event 
monitor. The waveform processing module, WP, is distributed among three seismic 
processing centers, at UC Berkeley, USGS Menlo Park, and Caltech/USGS Pasadena. 
Waveforms are telemetered from an individual seismic station to a processing center, 
where they are processed by the ElarmS WP. The WP detects P-wave arrivals, and stores 
key waveform parameters immediately following the P-wave: the peak amplitude 
(displacement, velocity, acceleration) and peak predominant period values every tenth of 
a second for four seconds. These values, along with the P-wave trigger time, are sent in 
one-second packets to the ElarmS Event Monitor, running in a single installation at UC 
Berkeley.  
 
The Event Monitor receives the one-second packets from all triggered stations in 
California, and associates related triggers together to identify earthquakes in progress. 
The event monitor then estimates the earthquake’s location and origin time using a grid 
search algorithm, and the earthquake’s magnitude using the τp

max and Pd/Pv magnitude 
scaling relations. When it determines that an earthquake has a large magnitude, it sends 
an alert message to the ShakeAlert Decision Module.  
 
The original ElarmS code has been running successfully in realtime for several years, but 
it was written as a research prototype, not production code. In order to successfully 
integrate with the realtime ShakeAlert system, we developed a second generation ElarmS 
code, designed specifically to maximize the current network, hardware, and software 
performance capabilities.  
The new code, referred to as ElarmS-2, or E2, consists of both a new waveform 
processing module and a new event monitor module. Here we describe the new event 
monitor. 
 
4.4 Second Generation Code, ElarmS-2 
The effectiveness of any early warning system depends on the timeliness of its warnings. 
E2 is written entirely in C++ for improved processing speed. The new event monitor 
features a modular code design, facilitating easy replacement of individual algorithm 
pieces (association, location, magnitude, and alert filter) at any time, without disrupting 
the processing stream (Figure 4.1). The new location and magnitude modules are 
functionally identical to their ElarmS-1 counterparts, just translated into C++ and 
rewritten more concisely. (See Brown, et al., 2009, for more details about the location 
and magnitude algorithms.) The association and alert filter modules are significantly 
redesigned, to improve accuracy and reduce false alerts. 
 
4.4.1 New Associator 
The purpose of the associator is to recognize that triggers occurring near each other in 
space and time represent P-wave arrivals from a single earthquake, and to determine 
which triggers belong to that earthquake and which don’t. Later blocks of code will 
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specify the earthquake’s exact location and magnitude, but first the associator needs to 
recognize that the earthquake is occurring.  
 
Space/Time Box 
The foundation of the associator is a simple space/time box (Figure 4.2). When a new 
trigger enters the system, the associator measures its proximity, in time and distance, 
from each existing event in the system. If the distance is within the acceptable bounds 
defined by the space/time box, the trigger is associated with the event, and the event is 
passed to the location and magnitude modules for recalculation.  
 
The new E2 associator has a wider space/time box, allowing more P-wave triggers to be 
considered for association. This is important because P-wave times are compared to the 
estimated event origin. In the early association stages, the estimated event origin may be 
off by several seconds and up to tens of kilometers. By widening the space/time box and 
allowing “negative time” for very near triggers, we ensure that slightly inaccurate event 
origin times and locations do not prevent association of valid triggers.  
 
Multistage Event Creation 
The original associator created a new single-station event from any new trigger which 
could not be associated with an existing event. The new E2 associator has additional 
levels of event creation (Figure 4.1). If a new trigger cannot be associated with an 
existing event, it is added to a “hopper” of unassociated triggers. The system then scans 
through the hopper, looking for any set of 3 or more triggers which can be associated 
together into a new event. Table 4.1 shows the specific requirements to create a new 
event with three or more stations. This multi-trigger event step is ideal for large 
earthquakes, for which many triggers may be detected simultaneously. If the system 
cannot generate a multi-trigger event, it scans through the hopper again, looking for any 
two triggers which are near each other in space and time and have significantly large P-
wave amplitudes and frequencies. This would indicate the first detections of a large 
earthquake. Finally, if the system cannot create a two-station event, it scans through the 
hopper one last time, looking for any one trigger with a P-wave amplitude or frequency 
large enough to justify a threshold alert message all on its own. Any trigger which is not 
associated with an existing event, or used to generate a new event, remains in the hopper. 
An isolated trigger may never be associated, and in that case may remain in the hopper 
until it expires and is deleted after 90 seconds.  
 
This multi-stage association method ensures that (a) earthquakes generating multiple 
triggers will be found first, thus prioritizing large earthquakes, and (b) small spurious 
triggers do not bog down the system by generating unnecessary events.  
 
P-Wave Parameter Thresholds 
To support multi-stage association, E2 defines multiple thresholds for acceptable τPmax 
and Pd values. Figure 4.3 shows the magnitude scaling relations for τPmax and Pd in 
Northern and Southern California (see Brown, et al., 2009, for more details about scaling 
relations and magnitude estimation). When associating a new trigger with an existing 
event, or creating a new event with three or more triggers, each trigger’s τPmax and Pd 

55



values must be within the level 1 range, which covers the entire scaling relation and all 
observed magnitudes.  
 Level 1:     -0.9 ≤ log10(τPmax) ≤ 1.0 -5.5 ≤ log10(Pd) ≤ 3.5 
 Level 2:        0.3 ≤ log10(τPmax) ≤ 1.0  0.5 ≤ log10(Pd) ≤ 3.5 
 Level 3: 0.45 ≤ log10(τPmax) ≤ 1.0           1.25 ≤ log10(Pd) ≤ 3.5 
When creating a new, two-station event, each trigger’s τPmax and Pd values must be 
within the level 2 range, corresponding to larger magnitude events. And for single-station 
events, E2 requires the τPmax and Pd values to be within level 3 range, corresponding to 
extremely large magnitude events and prompting an immediate threshold alert message.  
 
Station Density Adjustments 
The new E2 associator also adjusts its association criteria to the local density of seismic 
stations. Rather than requiring a set number of stations (after the initial event creation), it 
requires 50 percent of near-source stations to trigger. In densely-instrumented areas, far 
more stations must trigger for the event to be created than in sparsely-instrumented areas. 
As new stations trigger, the system considers whether including those triggers would 
violate the 50% requirement before deciding whether to associate them with the event. 
 
Split Event Prevention 
One challenge for the original ElarmS associator was “split events”, when a single 
earthquake would generate many triggers, some of which were associated with one 
system event, and some with a second system event. ElarmS-1 thus created two event 
numbers, two locations, two magnitudes, and two alert messages, when in reality there 
was only one earthquake.  
 
The new E2 associator attempts to confront the problem of split events by defining a 
“blackout window” around existing events. When the associator has a set of triggers 
prepared for generating a new event, it checks all existing events. If any existing event 
epicenter is within 15 seconds and 90 kilometers of the proposed new event epicenter, the 
associator cancels the new event. Any triggers which were flagged for association with 
the new event are released back into the hopper of unassociated triggers. This simple 
prevention of redundant events prevents the vast majority of split events.  
 
Figure 4.4 shows the San Leandro M3.6 event of August 24, 2011, processed by the E2 
associator with and without the blackout window. Without the blackout window (Figure 
4.4a), a coincident trigger north of the epicenter, seven seconds prior to the event, biases 
the event epicenter and origin time estimates. Additional triggers cannot be reconciled 
with the inaccurate epicenter, so they are formed into a second, erroneous event. Still 
later triggers do not match either event and are not associated at all. When the blackout 
window is enforced (Figure 4.4b), the second event is rejected and only the first event is 
created. As later triggers arrive they are associated with the first epicenter, gradually 
improving the accuracy of the estimated epicenter and origin time. By the time 9 stations 
have been associated with the event, the estimated epicenter is 1km from the ANSS 
catalog epicenter, and the estimated origin time is correct. Figure 4.4b shows the final 
event map 18 seconds after the event origin, when all stations have triggered and all but 
two have been associated with the event.  
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4.4.2 New Alert Filter   
The new E2 event monitor also upgraded the Alert Filter Module at the end of 
processing, just prior to sending messages to the ShakeAlert Decision Module. In order to 
send an alert message, the ElarmS-1 event monitor required an event to have four or more 
triggers, an event magnitude of 2.0 or greater, and an estimated epicenter within the 
greater San Francisco Bay Area (regions mSA, SFBA, and nSA in Figure 4.5).  
 
Number of Stations 
The new event monitor requires four stations, rather than triggers. This seems like a 
minor technicality, but as the seismic network in California is expanded, more and more 
stations are installed with multiple instruments, such as co-located accelerometers and 
broadband seismometers. The old requirement of four triggers can now often be satisfied 
by just two stations, which are not sufficient for triangulating an accurate epicenter.  
 
Multiple Magnitudes 
The new event monitor also considers not just the averaged event magnitude, but the 
τPmax and Pd magnitudes separately, as well as their relationship to each other. The 
average event magnitude must still be greater than M2.0, but also the Pd magnitude must 
be greater than M1.5. Perhaps more significantly, the difference between the two 
magnitudes can not be more than 2.5 magnitude units. Agreement between both 
frequency and amplitude of the P-wave minimizes the effect of scatter in the magnitude 
scaling relations for each parameter and reduces the likelihood of false alarms.  
 
Expansion of Alert Regions  
The alert block also expands on the regional alert criteria defined by the ElarmS-1 event 
monitor, adding alert criteria for the remaining regions of the state (Table 4.2 and Figure 
4.5). The new association and alert modules improve our confidence in ElarmS 
performance statewide, and we now send alerts for all regions.  
 
Event History 
Lastly, the new alert module stores a history of alert messages sent, so it can recognize 
whether changes to an event justify an updated alert message. The alert history has also 
proven useful for later event analysis. Thirty minutes after an event is first alerted, E2 
sends an event history email to the development team, detailing all steps of event 
processing, such as when new triggers were associated and how the magnitude and 
location evolved with time. 
 
4.4.3 Upgrades to Waveform Processing and CISN hardware 
The new waveform processing module, which runs at each of the processing centers, has 
also been upgraded. WP2 is designed to read and process smaller packets of waveform 
data, and send the resulting parameters more promptly. Details about the new WP2 can 
be found in Kuyuk, et al., 2012  (in prep). 
 
Finally, in addition to the software upgrades to both the waveform processing and event 
monitor modules, the CISN network of seismic instruments has benefitted from the 
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recent American Recovery and Reinvestment Act (ARRA) funding, which paid for 
hardware upgrades. Newer instruments, dataloggers, and telemetry systems have greatly 
improved the speed of data transmission throughout the network. 
 
4.5 Conclusion 
The new E2 code upgrade improves both the speed and accuracy of the ElarmS system. It 
is robust, modern code, compatible with the production-grade ShakeAlert system. E2 is 
being further tested and implemented by the Berkeley Seismological Laboratory EEW 
group, and performance results will be published in Kuyuk, et al., 2012 (in prep). 
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Figure 4.2: Space/Time Association boxes for ElarmS-1 (red dashed line) and E2 (blue solid line).
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Figure 4.5: Map of alert regions in California. ElarmS-1 sent realtime alerts for events 
in the nSA, SFBA, and mSA regions. E2 is designed to send alerts for all regions. 
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1. Associate triggers with existing events  ElarmS-1           E2
Tp/Pd range requirement         none        level 1
Association Space/Time Box               Red dashed line in Fig 1   Blue solid line in Fig 1
Required percentage of triggers       none          50%

2. Create new events with 3+ triggers       N/A        
Tp/Pd range requirement               level 1
Association Space/Time Box                65 km, 10 sec
Blackout Box around existing events              90 km, 15 sec

3. Create new events with 2 triggers       N/A
Tp/Pd range requirement               level 2
Association Space/Time Box                30 km, 5 sec
Blackout Box around existing events             90 km, 15 sec

4. Create new events with 1 trigger
Tp/Pd range requirement          none        level 3
Blackout Box around existing events              none         90 km, 15 sec
Forced event creation?           yes           no

Association Requirements
Table 4.1: Comparison of Association criteria for ElarmS-1 and E2. 

Regional Criteria    ElarmS-1        E2
SFBA     4 triggers w/in 35km 4 stations w/in 35km   
mSA     5 triggers w/in 100km 5 stations w/in 100km
nSA      5 triggers w/in 100km 5 stations w/in 100km
LA        -   4 stations w/in 35km
sSA        -   5 stations w/in 50km
All others: MTJ, eCAn,     -         10 stations w/in 100km
 BB, eCAs, cIS
Magnitude Criteria    ElarmS-1           E2
Minimum Event Mag         2.0           2.0
Minimum Pd Mag     -           1.5
Maximum Mag Difference:    -           2.5 
 Pd Mag - Tpmax Mag

Alert Requirements
Table 4.2: Alert Criteria for ElarmS-1 and E2.  
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Chapter 5 
 
Faster Earthquake Alerts with Assistance from an Artificial Neural 
Network 
 
 
 
This chapter has been submitted to the Bulletin of the Seismological Society of America 
as “Faster Earthquake Alerts with Assistance from an Artificial Neural Network”, 
by Brown and Allen, October 2012.   
 
 
 
5.1 Introduction 
Earthquake Early Warning (EEW) systems scan realtime seismic waveforms for P-wave 
arrivals, to rapidly identify earthquakes in progress, estimate the location and intensity of 
the event, and warn surrounding communities of the danger a few seconds before severe 
shaking begins (Allen and Kanamori, 2003). Several EEW systems are in place 
throughout the world; some warn the general public via cellphone, some are limited to 
government and industrial applications, and some are still in development (Allen, et al., 
2009a). Earthquake Alarm Systems, or ElarmS, is one of the algorithms currently 
contributing to the ShakeAlert demonstration EEW system in California (Böse, et al., 
2012).  ShakeAlert now sends alerts to test users throughout the state, and is in the 
process of continually being evaluated and improved. ElarmS is a network-based EEW 
system, requiring several adjacent seismometers to confirm a P-wave arrival before it will 
process the event and send an alert message. Requiring multiple seismometers greatly 
improves the accuracy of the alerts, but potentially decreases the speed of the alert as the 
P-wave has to arrive a more sensors.  
 
ElarmS receives realtime seismic waves from 572 seismic instruments (digital 
seismometers and accelerometers), located at 397 unique station sites, across California 
(Allen, et al., 2009b). It associates P-wave arrivals, referred to as triggers, at neighboring 
instruments together to detect earthquakes in progress. Trigger times and locations are 
used to triangulate an event epicenter. The P-wave amplitudes and frequency content are 
then used to estimate event magnitude (Brown, et al., 2009; Brown, et al., 2011). Once an 
event is detected, and its location and magnitude estimated, it must pass the ElarmS alert 
criteria before an alert message will be sent to users. The alert criteria specifies minimum 
magnitude, regional boundaries and, most importantly for this study, the number of 
seismic stations which must be reporting P-wave triggers. (There may be more than one 
seismic instrument at any given station.)  The current methodology and performance of 
ElarmS is detailed by Kuyuk, et al. (in prep). 
 
When ElarmS requires four or more seismic stations to trigger (register a P-wave arrival) 
before sending an alert message, it has a statewide false alert rate of only 4%. If we relax 

65



the alert requirements and allow ElarmS to send alerts with only 2 or 3 stations, we 
observe a prohibitively high false alert rate of 21% or 15%, respectively. These false 
alerts are mostly due to spurious noise triggers at individual stations. The majority of the 
false alerts are small magnitudes (M~2.5), but still we want to minimize them. Therefore 
the alert criteria in the current realtime version of ElarmS requires 4 stations before 
sending an alert to users. Waiting for four stations to trigger exacts a cost of one to two 
seconds. When the warning is only a few seconds to begin with (for all types of early 
warning systems), waiting an extra second or two for additional stations to trigger is a 
high cost. The purpose of this study is to determine how we can improve ElarmS 
performance with fewer triggered stations, and thus send faster, earlier alerts.  
 
5.2 ANN Approach 
In 2012 we began testing an Artificial Neural Network (ANN) at the end of ElarmS 
offline processing, to catch false alerts before they are released to users. The ANN reads 
input data (an earthquake alert message) and the desired output (true or false) for a large 
dataset of sample events, and optimizes a mapping function between inputs and outputs 
(Bishop, 1995). That function can then be utilized on future events to filter out alerts with 
a high probability of being false.  

5.2.1 Training Method 
We utilized the MATLAB Neural Network Toolbox (Demuth, et al., 2009) to generate 
each ANN, with ten neurons in the hidden layer and one neuron in the output layer. 
During training, the ANN is provided a random subset of 70% of the inputs and their 
outputs, and iteratively finds the best function to describe the relationship between the 
sets. Each neuron has an associated weight and bias (Bishop, 1995), and the training 
stage utilizes feed-forward back propagation to adjust the neural weights and biases until 
the output error is minimized (Derras, et al., 2012). A separate 15% of the dataset is used 
to repeatedly test the evolving function and recognize when it has stopped improving. 
Finally, the last 15% of the dataset is used as an independent test of the function’s 
performance.  
 
5.2.2 Dataset 
Our dataset was all ElarmS alert messages between December 6th, 2011, and May 14th, 
2012. Within this time period the Advanced National Seismic System (ANSS) catalog 
lists 1061 real earthquakes of magnitude 2 or greater in California, up to a maximum 
observed magnitude of 5.6. An ElarmS alert message was designated true if its estimated 
location and origin time were within 100km and 30 seconds of an ANSS catalog event. 
 
We configured ElarmS in three ways, to generate events and send alert messages using 2 
or more stations, 3 or more stations, and 4 or more stations. Depending on the 
configuration, ElarmS produced between 337 and 512 alert messages in this time period. 
Each of these configurations produced a separate dataset, used to train a unique ANN 
function.  
 
5.2.3 Variety of Input Configurations 
Each of these datasets contained a great deal of information about the events. We varied 
the parameters offered to the ANN, to see which event details were most useful. A human 
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seismologist, glancing at an incoming alert, would depend most on location, magnitude, 
number of triggered stations, and distribution of stations to predict whether the event is 
true or false. What factors would the ANN depend on? The input options offered to the 
ANN included location (latitude, longitude), residual of the location estimate which is the 
average absolute difference between the observed trigger times and the predicted trigger 
times (referred to as location misfit), the number of triggered stations (nS), the number of 
triggered instruments (nT, of which there might be several at any given station), the 
estimated magnitude, two numerical descriptions of trigger distribution, and different 
combinations of these. The trigger distribution was described by counting the number of 
triggers as a function of azimuth (in 60 degree bins) and distance from the epicenter (in 
20km radius bins). 
 
5.3 Results 
5.3.1 Statewide Results, 2-Station Configuration 
We began by determining which input variables were of most value to the ANN to 
discriminate between true and false events. We configured ElarmS to generate alerts after 
two or more stations have triggered, since this configuration generates the most alert 
messages. The dataset contained 512 alert messages between December 6, 2011, and 
May 14, 2012, with a statewide false alert rate of 21%. We selected an assortment of 
input variables (latitude, longitude, magnitude, number of triggered stations, number of 
triggered instruments, and location misfit) and trained an ANN for each input variable or 
combination of variables. Table 5.1 shows the resulting false alert rate when each ANN 
function was tested. 
 
The best results (rows H and I) are when we provide the ANN with all the information 
contained in a typical alert message: latitude, longitude, location misfit, number of 
triggered instruments, and number of triggered stations. The inclusion or exclusion of 
magnitude does not affect the results. Adding trigger distribution bins (rows J and K) 
shows no evidence of improvement, likely due to the heterogeneous distribution of 
stations in California, including the absence of stations offshore. 
 
Dividing the input variables provides insight into which variables are most useful for 
predicting false alerts. Training an ANN with only latitude and longitude (row A) and no 
other event characteristics results in a false alert rate of 19%. This is a slight 
improvement over the original rate of 21%. Training an ANN with nT and nS only (row 
C), or with location misfit only (row B), results in a increased (worse) false alert rate of 
23%. And training an ANN with magnitude alone (row D) gives the worst result of all, a 
27% false alert rate.  
 
This means that when we train an ANN with all available data (row H), it is depending 
most heavily on event location, with a lesser dependence on number of triggered 
stations/instruments and location misfit. This is not surprising, given that a human 
seismologist often considers event location first, as well. Events in areas with historically 
high seismicity are likely to be true. Events in historically quiet regions are more likely to 
be false. The ANN mapping function grants a similar a priori historical knowledge to the 
ElarmS algorithm.  
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For all subsequent ANNs, we use the five input parameters from row H in Table 5.1: 
latitude, longitude, location misfit, number of triggered instruments, and number of 
triggered stations. We choose to not include the magnitude as this does not improve 
performance and its inclusion may result in an increased likelihood that the ANN will 
declare an event false if the magnitude is unusual (i.e. large) which is precisely when the 
alert is most important. 
 
5.3.2 Statewide Results, 2-, 3-, and 4-Station Configurations 
Having determined the best combination of input variables, we moved to trying different 
ElarmS configurations. ElarmS can be configured to send alerts with 2 or more stations, 3 
or more stations, or 4 or more stations. Table 5.2 shows the false alert rate before and 
after application of the optimized ANN mapping function.  
 
When ElarmS is configured to send alerts with two or more stations, applying an ANN 
mapping function improves the false alert rate from 21% to 17%, as we saw previously. 
When ElarmS sends alerts with three or more stations, the ANN has a greater effect, 
improving the false alert rate from 15% to 8%. When ElarmS sends alerts with four or 
more stations, as the current realtime version does, the ANN can offer essentially no 
improvement. The false alert rate is 4%, with or without the ANN. When we examine the 
results from this trial (row M) more closely, we find that the ANN mapping function 
identifies every single ElarmS alert as true. There are so few false alerts in the 4-station 
dataset that the ANN can find no pattern at all, and the resulting function is simply a one-
to-one relationship. 
 
5.3.3 Regional Specifics 
Noting that the ANNs depend most heavily on location, we examine which regions of 
California are most effected. Figures 5.1 and 5.2 show maps of alerted events, before and 
after application of an ANN mapping function.  
 
The blue stars in Figures 5.1b and 5.2b represent blocked false alerts. Without the ANN 
mapping function, ElarmS would send alert messages for these nonexistent events. When 
we applied the mapping function, the alerts were correctly identified as false, and were 
not sent. The red stars represent newly missed events. These are real events, which 
ElarmS correctly sent alerts for without the ANN. However, when we apply the mapping 
function, the events are incorrectly identified as false, meaning alert messages would not 
be sent. In Figures 5.1b and 5.2b note that almost every red and blue star is located in 
Southern California. In other words, most of the false alerts are in the south and the 
mapping function is therefore blocking alerts primarily in the south and making almost 
no changes in the north.  
 
We returned to our ANN outputs and divided them at the 36th parallel, to see the false 
alert rates in each half of the state. Table 5.3 shows the false alert rates before and after 
the application of ANN mapping functions, for Northern California (latitude >= 36 
degrees), Southern California, and total statewide.  
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The difference between performance in Southern and Northern California is stark. In 
Northern California, the ANN mapping function does not noticeably affect output. False 
alert rates are the same before and after the application of the ANN filter. Even when 
requiring only two stations to send an alert, ElarmS demonstrates a false alert rate of 
merely 5% in Northern California. 
 
In Southern California, however, the false alert rates are six to eight times higher. When 
ElarmS is configured to send alerts with two stations, it has a Southern California false 
alert rate of 29%. The ANN decreases the false alert rate to 24%. When ElarmS is 
configured for three stations, it has a baseline false alert rate of 23% in Southern 
California, dropping to 12% when we apply the ANN mapping function. When we 
require four or more stations, as the current released version of ElarmS does, the 
Southern California false alert rate is 4%, equivalent to that of Northern California and 
unaffected by the ANN. 
 
5.3.4 Effect of Earlier Alerts on Timeliness and Magnitude Accuracy 
Table 5.4 shows the time gained by sending earlier alerts, and the change in accuracy of 
the magnitude estimate. We calculated the average time gained by subtracting the arrival 
time of the second triggering station from that of the fourth triggered station for each of 
the events in our dataset. On average, we find that ElarmS receives the second trigger 2.2 
seconds before the fourth trigger (Table 5.4). The third trigger arrives 1.8 seconds before 
the fourth trigger on average.  
 
An ElarmS four-station alert has an average magnitude error of -0.1 ± 0.2 magnitude 
units. Alerts sent with two or three stations have an average magnitude error of 0.2 ± 0.4 
magnitude units. So by sending two- or three-station alerts we would be able to warn 
users about two seconds earlier than when we delay alerts until four stations have 
triggered, at a cost of about 0.1 magnitude units of accuracy. 
 
5.3.5 Effect of Large Magnitudes 
When we looked at the different possible input parameters (Table 5.1) that we could offer 
to the ANN, we determined that the row H combination was most effective. Each 
subsequent ANN was given event latitude, longitude, number of triggered stations, 
number of triggered instruments, and location misfit. The ANN mapping function and its 
results are thus completely independent of magnitude. There is then no difference 
between the small to moderate magnitude events used for the development of the ANN 
and large (magnitude > 6) events for which warning is most important. The number of 
triggered instruments and stations would be larger for a large magnitude event, but we are 
only considering using the mapping function for the initial 2- and 3-station events. When 
additional stations have triggered, ElarmS would bypass the mapping function anyway. 
 
5.4 Conclusion 
We find that applying a ANN-derived mapping function at the end of the ElarmS 
processing stream can improve the accuracy of ElarmS alert messages for Southern 
California events when only two or three stations have triggered. The number of false 
alerts generated by ElarmS in Northern California, and statewide after four or more 
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stations have triggered, is already very low and cannot at this time be improved by 
applying an ANN mapping function.  
 
We recommend the following application of the ANN to ElarmS realtime processing: 
1. When only two or three stations are providing trigger information, apply the ANN-
derived mapping function to decrease the false alert rate. This study also provides the 
basis for likelihood estimates giving the probability that an alert is a true earthquake.  
Users can then have the option of receiving 2- or 3-station alerts earlier, with lower 
likelihoods, or not. 
2. The ANN can be applied to all events in California for simplicity of implementation.  
However, it will only have an effect on the number false two- or three-station event alerts 
for events south of latitude 36, where the false alert rate is higher.  North of this latitude 
the number of false alerts is already low and is not improved by the ANN.    
3. Once an event has four or more stations reporting, bypass the ANN mapping function 
completely and issue all alerts generated by ElarmS as is currently done.  Applying the 
ANN at the 4-station triggered stage provides essentially no improvement.  Not using the 
ANN at this stage also removes the concern that the ANN will block an event because it 
is unusual compared to the training dataset. 
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 Input Variables      % False
 None (no ANN)  21%
A Lat, Lon    19%
B Loc. Misfit   23%
C nT, nS    23%
D Magnitude   27%
E Lat, Lon, Loc. Misfit 21%
F Loc. Misfit, nT, nS  21%
G  Lat, Lon, nT, nS  21%
H Lat, Lon, Loc. Misfit, 17%
 nT, nS
I Lat, Lon, Loc. Misfit, 17%
 nT, nS, Magnitude  
J Row H + Azimuth Bins 18%
K Row H + Radius Bins 18%

Table 5.1: Comparison of input variable options. The first row shows the initial false alert 
rate, before application of any ANN. Each ANN (A through K) is trained on the same dataset 
of 512 alert messages, produced when ElarmS is configured to send alerts with 2 or more 
stations. The combination of input variables is unique to each ANN. The false alert rate 
shown is that during the final testing stage of the ANN function. Abbreviations are as 
follows: Lat = latitude; Lon = longitude; Loc. Misfit = the residual of the location estimate; 
nT = number of triggered instruments; nS = number of triggered stations.

          Before ANN   After ANN
 ElarmS Configuration # alerts % false    # alerts     % false
 H  2+ stations     512    21%       503      17%
 L  3+ stations     470    15%       434       8%
 M  4+ stations     340     4%       340       4%

Table 5.2: Comparison of ANN performance for different ElarmS configurations. A unique ANN (H, L, M) 
is trained for each ElarmS configuration (requiring at least two stations, three stations, or four stations to 
send an alert). The input variables are the same for each ANN: latitude, longitude, location misfit, number 
of triggered instruments, and number of triggered stations. Magnitude is not provided to the ANN. Row H 
is the same configuration as row H in Table 5.1.
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Chapter 6 
 
Conclusions 
 
 
 
In 2007 ElarmS was a research prototype, consisting of solid foundations but still running 
offline in outdated code. During the subsequent five years we transformed ElarmS into a 
production grade system. 
 
In 2007 and 2008 we tested it with large earthquakes in Japan to forecast its future 
performance for large events in California, and found that the magnitude scaling, location 
and ground motion prediction algorithms remain valid for large events. We thoroughly 
analyzed the uncertainties in all aspects of event estimation and developed a statistical 
error model to describe changing uncertainties during processing. 
 
The Berkeley Seismological Laboratory EEW group then adapted ElarmS to run 
continuously, analyzing hundreds of seismic waveforms second by second from 
instruments throughout the state. A single installation of ElarmS at UC Berkeley 
coordinated all the incoming data and identified earthquakes in progress, sending 
immediate email notification to the development group. We analyzed latencies in the 
system and continually tested and improved system performance. 
 
In 2010 and 2011 we overhauled the code. We transferred the high performance 
magnitude and location algorithms directly into C++, and significantly renovated the 
association and alert modules. The resulting E2 code is fast, efficient and reliable, 
running continuously in realtime and sending alert messages to CISN ShakeAlert. 
 
Finally, in 2012 we further improved performance and speed by applying an Artificial 
Neural Network (ANN) at the end of ElarmS processing, to detect and block false alerts 
prior to transmission to the ShakeAlert Decision Module. The ANN study allowed us to 
investigate and improve uncertainties with varying numbers of seismic stations.  
 
Now, at the end of 2012, what was a research prototype has become a robust, streamlined 
product. ElarmS processes simultaneous seismic waveforms from hundreds of seismic 
instruments throughout California, identifies earthquakes in progress, estimates the event 
magnitude, location and damage potential, and sends immediate alerts to the CISN 
ShakeAlert system. ShakeAlert, in turn, sends alert messages to government, industrial, 
and academic test users throughout the state. As ShakeAlert is further tested and trusted, 
the warnings will reach more Californians, providing precious seconds of warning before 
disaster strikes, and potentially saving countless lives in future earthquakes. 
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