Allen CV
Seismo Lab
Earth & Planetary
UC Berkeley

PhD Thesis:
Tracing the Farallon plate through seismic imaging with USArray

Robert Porritt
Doctor of Philosophy
Earth and Planetary Science
University of California, Berkeley

Advisor: Richard M. Allen

Spring 2013

Download the thesis: PorritThesis2013.pdf

The Farallon plate system has been subducting off the western United States since at least the middle Mesozoic. This plate has undergone virtually every subduction process during this time including a long episode of flat-slab subduction, generation of microplates, and formation of oceanic plateaus. The shallow remains of this plate are two small microplates, the Gorda and Juan de Fuca, in the Pacific Northwest. The anomalous nature of these two small plates and the missing deeper evidence of subduction has motivated this study.

The USArray seismic experiment has provided unprecedented spatial sampling of the seismic wavefield in the continuous United States. Utilizing this dataset, new imaging methods have been implemented and older imaging methods have been revitalized. This study first uses ambient seismic noise in the Pacific Northwest to extract short period Rayleigh waves which are sensitive to lithospheric scale structure. Phase velocities from this model are then combined with teleseismic delay times of body waves and surface waves to image the structure of the continuous United States from the surface through the mantle transition zone. The resolving power of this model allows tracing of the Farallon plate from the trench to the lower mantle.

The seismic velocity structure of the continuous United States is broadly composed of a slow western half and fast eastern half separated by the Rocky Mountain Front. The low velocity of the western U.S. contains several high velocity anomalies. While previous work has focused on individual anomalies and suggested they represent lithospheric instabilities, a larger regional view indicates that these are the western remnants of the Farallon plate. Below the thick cratonic lithosphere of the eastern U.S., the Farallon plate contains significant topography due to a subducted heterogeneity of the oceanic plate and a viscosity contrast through the mantle transition zone. The velocity models presented herein provide a cohesive picture of Farallon subduction for the past 150 Ma.
© Richard M Allen