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Supplementary M aterials:
» MyShake: A smartphone seismic network for earthgueely warning and beyond
* MyShake: Smartphone based earthquake alerts

Qingkai Kong, Richard M. Allen, Louis Schreier, Ya+Woo Kwon

1 Data collection: The MyShake application

"MyShake" is an android application used to rele@asprivate/personal phones. It was
released to 75 phones in November 2014 (Fig. Shis Test release was aimed at student
volunteers on the UC Berkeley campus. The trigégordahm at the time consisted of a simple
STA/LTA algorithm @4). The application first requires the phone to remstationary for 30
minutes, meaning the acceleration is minimal andtriikely the phone is siting on a stationary
surface. When it meets this requirement, the pleorers into "steady state". The ratio of short-
term average (STA) and long-term average (LTA) oy @f the 3-components must then exceed
a threshold to trigger. When it does, trigger infation was immediately sent to CPC including
the phone location, time of the trigger, phone #bd the maximum amplitude. A total of 5
minutes of data was also stored locally on the phftom 1 minute before the trigger to 4
minutes after. A ring buffer stores the last minoteaccelerometer data in memory at all times
for this purpose. The application also uploadsestéthealth (SOH) information every 2 hours
and can receive updates and triggers from the TRE SOH information provides us with basic
information about the number of phones runningdpplication, their location, lifetime of the
app, etc. We can also update/change the settintdje @pplication on an individual phone or all
phones from the CPC, for example changing the driggarameters. Finally, we can trigger
recording on a phone from the CPC. Either individplaones or the entire network can be
triggered to record for a period of time. The wawef data was only uploaded when the phone
was plugged into power and had a Wi-Fi connecttominimize power and data-plan usage. All
these parameters can be modified remotely. We atetlefour months of triggered human
activity data for our training and testing data$ag. S1). During this period 17600 triggers (all
due to human activities) were uploaded to our CPC.

Accurate time is key for all data. The drift in thaternal clock on the phones is
unacceptable for earthquake-related applicatigmscadlly ranging from 0.4 — 8.6 sec/dag5y.
Thus, geographically distributed nodes need tolsymsze their clocks. In the last decade, much
research has been conducted to synchronize ditferemnal clocks by referring external signal
sources such as power lines, FM radio, Wi-Fi, nelsilation, etc. Of them, Network Time
Protocol (NTP) is the most commonly used clock &yanization protocol. With a very low
network and computation cost, NTP is able to symwize all the participating nodes within a
few milliseconds. In the MyShake application ak thccelerometer data is associated with its
local device clock, so we synchronize them to Coatgd Universal Time (UTC) via NTP. The
MyShake application synchronizes its local clockrgvl hour, thereby minimizing network and
computation cost while ensuring sufficient clockaacy at all times.

Power usage of the application is also importamatreil selection of which sensors to
use and when is needed to reduce the power needevel that would not impact normal daily
smartphone use. Our goal was an application thatlamntinuously run in the background and



still only require the phone to be charged oncedasr for most/typical phone users. Working
within these power requirements, we found thas ipossible to monitor the accelerometer data
continuously all day. However, it is not possilbecbntinuously use the GPS unit, as it is very
power hungry. Instead, we only access GPS at $pdicifes when needed. For the initial 2014
release we only attempted to obtain a location vitherphones triggers. When a location request
is made to the phone, it returns the best availkdation. If a GPS location is available it is
returned. If not, then the location based on gudation with cell phone towers is used, if not,
then the last available location is used.

The current version of MyShake that we plan toaséepublically is modified to add the
classifier analysis developed to distinguish earétkg from non-earthquake motions, and the use
of GPS location has been modified. We continue d@eehthe same initial STA/LTA trigger
requirement, after the STA/LTA triggered, we usee?- data windows with a 1-sec step to
calculate the three key features (IQR, ZC and CA¥jo 10 sec after the STA/LTA trigger. The
calculated features in each time window are fed ithie Artificial Neural Network (ANN)
detector (on the phone) to determine if it is &lykearthquake or not. This two-step approach is
implemented so that we do not increase the powvegrinements, since the STA/LTA method is a
simple and low cost computation method. The apprdacdetermining location has also been
improved by determining the best available locatarthe time the phone enters steady state.
Now, when the phone enters steady state, the agiplcwill try to sample the GPS location. It
may take a few seconds to minutes before it getatde GPS location. Since phones typically sit
in steady state for some time (while sitting onealdor charging over night) it is unlikely that a
trigger occurs in the first few seconds or minuté$or some reason the phone cannot get the
GPS location, e.g. the phone is inside a largedmgl then the cell phone network location that
based on cell phone towers is used. The phone dtweas the best available location for the
duration of the steady state phase and associatgthithe other trigger information when the
phone next moves.

2 Classifier analysis: Detecting earthquakes on a phone

We used three types of data for training, validatamd testing our classifier. Firstly,
normal human activity data collected from the Myi&halovember 2014 release for four-month
period shown in Fig S1. For waveforms to be upldadee phone must be stationary, and then
move to trigger the STA/LTA algorithm as descrilkedabve. 10 seconds of data immediately
following the human trigger is used in our analy$ie used the first three months of data to
train and validate the algorithm, and the last howmis kept for final testing.

The second type of data consists of earthquakesded on smartphones that were
placed on a shake table. These include 241 3-coempaacords from 45 shake table tests runs.
The input waveforms into the shake table were pasthquakes with amplitudes rescaled to
satisfy the displacement capabilities of the shtakée. We only selected the strongest portion of
the waveforms recorded by the smartphones, seexampte in Figure S2. We focus on the
strongest portion of the waveforms, as it is difficfor our classifier to distinguish weak
earthquake shaking from human activities. This skdtavas used entirely for the training and
validation phase.

The third type of data also consists of earthquakes recorded on regional seismic
networks in Japan and US. It was first modified raplicate waveforms recorded on a



smartphone. To do this we first converted the 24daita to 16-bit data, then we added a
smartphone noise record from the noise floor testsroduce accelerometer records similar to
what we would record on a phone laying on a stuedye during the event. Phones are not
expected to trigger on the initial low-energy P-eswvespecially for smaller earthquakes, instead
to trigger on the larger amplitude portions eartilgqushaking. We therefore selected windows of
data from only the strongest portion of shaking.(€ig. S2). We used strong motion data from
Japan's KiK-Net and K-Net to train and validate @lgorithm. Data with horizontal peak
amplitude greater than 0.2g for the period fromudayn 1, 1996 to February 1, 2015 was
downloaded from NIED (National Research InstitdeEarth Science and Disaster Prevention).
A total of 317 3-component records from 203 evewere selected. To further test the
performance of the algorithm, we used earthquaka ftam the California Integrated Seismic
Network (CISN.org). We used 389 3-component recosithin 30 km of the earthquake
epicenter from 5 events that obtained from CESMEn{€r for Engineering Strong Motion
Data), NCEDC (Northern California Earthquake Da&ntér), and SCEDC (Southern California
Earthquake Data Center), the results is showinialve 1.

All data was first high-pass filtered in a simuthteal-time manner using the method
described in36). A range of characteristics in overlapping 2-data windows was calculated
with 1-sec step. We experimented with using difiéngindow lengths and steps and found this
to be the best compromise between having more atadakeeping the window short to detect
earthquakes more rapidly. 18 different featuretugiog frequency features, amplitude features,
and statistical features was tested. All featuis low to moderate computational requirements
making it feasible to rapidly determine their van a phone.

Since there were far more data points from humaivites than that from earthquake
data, this imbalance of classes could affect oassifier 87). In order to create a dataset with
equal classes, we used the kmeans cluster me8%dd group the human activities into a
number of clusters, with the number of clustersigaqual to the number of the earthquake data
points. The centroid of the cluster was taken f@rasent human activity data. This not only
created a balanced dataset for us to train ousitixs but also reduced the computation burden
during the training.

We selected the best 3 features to distinguish dmtwearthquake and non-earthquake
data using greedy forward featuY) selection. They are the interquartile range (IQRween
the 25th and 75th percentile of the acceleratioctoresum, the zero crossing rate from the
component with the highest value (ZC), and the dative absolute velocity (CAV) of
acceleration vector sum. IQR is an amplitude patamthat shows the middle 50% range of
amplitude of the movement. ZC is a simple frequemeasure. CAV is a cumulative measure of
amplitude on the three components in the time windod is determined as follows:

CAV = j |a(t)| ot
0
Where a(t) is the vector sum of the 3 componertslatation.

An ANN (artificial neural network) approach is ustedclassify a particular data window
as an earthquake or not an earthquake. Each feassréirst scaled to a range of 0 to 1. We used
an ANN with one hidden layer and completed a geadrsh to test different numbers of neurons.
Best performance is achieved when the ANN has ddmdayer with 5 neurons (Figure S3) with
a standard sigmoid activation functi®Y) defined as:
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The ANN was trained and validated using 3 monthisuphan activity data, and
earthquake data from shake table tests and Japavests. The dataset was split multiple times
using 70% of the data for training and 30% foritesfor cross-validation tests. The accuracy of
the classifier when applied to the test dataseteng good, showing 98% to 99% accuracy each
time (Tables S1, and Fig S4).

Our trained ANN classifier algorithm was testedapplying it to a dataset consisting of
data that was not used in the training/validatisncpss. This contained the last month of
MyShake human activity data (February 1 to 28, 2048d data from large US earthquakes
modified to represent waveforms recorded on smartpd. Note that no selection criteria were
applied to the US earthquake data (recall thatHerJapan earthquake data, we only selected the
stations have clear large amplitudes). We apphedclassifier to all available waveforms, and
the results of this validation are shown in Tabkndl described in the main text.

3 Network detection algorithm

Our first-generation network detector identifieslijple triggers in a space-time cluster,
and is based on the approach used in our Elarm&tRogeiake early warning algorithm for
traditional regional seismic network22j. We stored triggers for 20 seconds and look for 4
more triggers within a 10 km radius region that banassociated. We require greater than 60%
of operating phones to have been triggered withikrh of the location of the event for an event
to be declared (the estimated event location iscm@roid of the locations of the triggered
phones.). The origin time is assumed to be thdheffirst phone to trigger. The magnitude is
estimated based on the peak ground acceleratithre dfiggered phones as described in the main
text. Triggers from phones at greater than 10 knstntiben fall within a defined space-time
region to be associated with the event (Fig. S5).

We used simulated phone triggers from two earthgsidk test the performance of the
algorithm: 2014 La Habra M5 earthquake and 2004 Raékfield earthquake. See the Fig. 6,
Movies S1, and S2 for the detection of these twthgqaakes, and Table S2 for the performance
of the algorithm. In these simulations we assunre f&ency due to processing and network
transmission. We estimated the actual latencywliabe introduced into the system due to the
processing on the phone and network transmissiost, Eo estimate the processing delay of the
ANN on the phone we did a test run for one nightt Bound the average processing time is to be
4.5 milliseconds. Second, the transmission of tlgger data from phone to CPC is via UDP
(User Datagram Protocol), which is a common chéicdime-sensitive applications. We found
that the average delay time of transmitting theadedm the phone to the CPC via UDP is 50
milliseconds.

In addition to the simulated phone triggers froral rearthquakes, we generated phone-
triggers for a simulated network to test perforneasensitivities of our network detector. We
used a 1° by 1° box and randomly distributed Niatatwithin the box where N can be 100, 200,
300, 400 or 500. We allowed randomly distributedsdatriggers at a rate based on the
assumption that 10% of phones initially trigger doienovement every second, and then 7% are



classified erroneously as an earthquake (Movie 8&).then added earthquake triggers due to
earthquakes using the following method (Movie S4).

The trigger time for each phone is based on Fig¥%en the distance of the phone from
the epicenter, the trigger time is randomly seketéhin the time range given by the blue lines
on Fig S5. To determine a probability that a phtiwgers, we developed a simple regression
relation for the probability of a trigger given thstimated peak ground acceleration (PGA) at the
site. We estimated peak ground acceleration atitbeising a standard ground motion prediction
equation 88). Our observations from the M5.1 La Habra eartkquare that the probability a
phone triggers is 1, 0.8, 0.4, 0.25, 0.1, 0.01patemtral distances up to 5, 10, 20, 30, 40, and 50
km respectively. Using these observations we perdd a simple regression between BgA
and trigger probability. The resulting regressielation is

P = 0.798 X log,,PGA — 0.557

where P is the probability that a phone is trigdeta the case that P>1 we set P=1 and P<0 we
set P=0.

In 1000 simulations for each value of N, there were false network earthquake
detections. For N=500, 400 or 300 the performascamilar with all events detected ~3.5 sec
after the origin time with location errors of ~4kfaple S3, Movie S4). For N=200, 32 of the
1000 events were not detected, and 11 were nottddtdor N=100 (Table S3). It also took
longer to detect the events, and the locationddrger errors for N=100 and 200 illustrating the
need for a dense distribution of smartphone detedtw this approach to work. The N=300 case
corresponds to average distance between phoned &h6 We also did 1000 simulations with
only noise data without earthquakes, and foundtherithm did not have false alert issued. This
is due to the requirement that >60% of active pbkotmgger within a 10 km radius for an
earthquake to be declared.

4 Estimate war ning time for Katmandu, Nepal

For the M7.8, 25 April 2015 earthquake in Nepal sa® estimate the possible warning
time in Katmandu using our smartphone seismic nétwpproach. The location of the epicenter
is 28.147°N, 84.708°E, and the location of Katmarsd®7.700°N, 85.333°E, a separation of 79
km. The S phase of the earthquake will arrive atnm€adu in 25.2 seconds based on iasp91l
model 39). Assuming there are smartphones near the locatidhe earthquake, and because
our network detection algorithm makes use of phamésin 10 km of the epicenter, we would
expect an earthquake detected when the S-waveagd€hkm from the epicenter, which is 3.9
seconds after the origin time based on iasp91.€fbe, there could be ~20 seconds warning if
we have a smartphone seismic network in Nepal.
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Fig. S1. MyShake activity 1 November 2014 to 28 February 2015. (a) Number of phones that
downloaded MyShake and registered with our netwgrken curve), and the number of active
phones running the application on a given day basedhe SOH information (blue curve).
Server at CPC restarts during the first month ésrdason the number of active phones drops to
zero. (b) Number of phone triggers each day witlvef@ms uploaded to the CPC, a total of
17600 triggers were collected.
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Fig. S2. Example earthquake record used to train the ANN classifier algorithm. The
waveform is the B/ component from a regional network station 16.5fknm the epicenter ¢
the western Tottori earthquakeM7.3) of October 6, 2000The data has been modified
represent a smartphone recording at the same dac Only 2sec windows of data from tt
yellow region were used to train our algoritt



Fig. S3. Structure of ANN classifier algorithm. It has three layers: one input layer with 3
nodes, a hidden layer with 5 nodes, and an ougyarlwith 1 node. For the hidden layer and
output layer, the inputs from the previous layethie each node will be first summed and then
fed into an activation function shown as f.
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Fig. $4. Receiver operating characteristic curve. Shows theANN classifier performance on
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Figure S5. Phone trigger times versus epicentral distance. The regional network datfrom
California and Japawas modified to phor-quality data and then our classifier applied to
data to determine when a trigger occurs. The rezlif the be-fit to the data andas a moveout
velocity of 3.2 km/sec; most triggers are generdtgthe -waveor the later surface wa. The
blue outline is the timepace window used for association of triggers waithevent by th
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Table S1. Accuracy score for ANN classifier with 10-fold cross-validation. The score row
shows the accuracy score for each run defined as

accuracy(y,9) = XA 1§ = y),
where n is the number of samples used,lasc function that takes 1 when the argumenuis, tr
and 0 otherwise. This means that if the ANN classigorrectly classify the data, thénvill be
1, otherwise 0. So the higher the average scoeebé¢lter the ANN classifier. We ran a 10-fold
cross validation, which means we split data intos&6 of n/10 and trained on 9 datasets and
tested on 1 dataset. We repeat this process 1@, tamel each time select a different dataset as

test set. The mean row shows the average scoretfrerhO runs, with the deviation showing in
the parentheses.

1 2 3 4 5 6 7 8 9 10
Score| 0.9893 0.9830| 0.9839| 0.9811| 0.9919| 0.9919| 0.9893| 0.9857| 0.9821| 0.9966
Mean 0.986 (+0.001)

Table S2. Simulated network detection performance for U.S. earthquakes. Simulated phone
triggers from 2014 La Habra M5 earthquake and 2064Parkfield earthquake were used to test
the network detection algorithm. The magnitudeatmn and origin time estimates and errors
are given for the initial MyShake estimates.

Earthquake Origin time Event | Event Alert Ma Location | Origin time
9 9 latitude | longitude| time & | error (km)| error (sec)
La Habra: March 29,
True ' 2014 33.932| -117.917 5.1
04:09:42 3.76 2
La Habra: | /.09.44 | 33.000 -117.930 04:09:47 5.2
Estimated
. Sep 28,
PaT”r‘Sg'd' 2004 | 35.815| -120.374 6.0
17:15:24 1.55 2
Parkfield: | 21556 | 35810 -120.390 17:15:28 5.5
Estimated




Table S3. Simulated network performance for various phone densities. N is the number of
randomly distributed stations within a 1°x1° box 132£111 km); we did 1000 simulations in
each case for a M6.0 earthquake. The location raoe the differences between the true
earthquake location and the estimated earthqualaidm. The origin time errors are the time
difference between the true earthquake origin tame that estimated. The detection time is the
time after the true earthquake time that the allgoridetects it. In all cases we show the average
value £ standard deviation. The last column showes iumber of simulations in which the
earthquake was not detected.

Nu(r)r;ber Location Origin time | Detection time after] Events not detected
. error (km) | error (sec) | true origin time (sec (out of 1000)

stations

N =100| 14.02+8.92| 4.41+2.80 6.59+2.87 11

N =200| 5.29+4.42 1.77+0.96 3.93+0.99 32

N =300| 4.36+4.79 1.42+0.77 3.53+0.80 0

N =400, 3.56+3.18 1.27+0.66 3.48+0.69 0

N =500| 3.50+3.86 1.26+0.73 3.51+0.63 0




Movie S1. Network detection animation for the 2014 M5.1 La Habra earthquake.
Animation shows snapshots of trigger detectionsyesecond for the 2014 La Habra earthquake
simulation. Time is shown in seconds after the ewgigin time. Grey dots are stations; pink
indicates a trigger. The true earthquake locatsothe red star and grey circles indicate 10, 20
and 30 km radius. The blue star represents thmat&d event location, first detected at 5 sec.
This simulation used regional network data for #nrent modified to phone-quality records. The
phone trigger and classifier algorithm is then &aplto generate phone-triggers; the network
detection algorithm then detects the event.

Movie S2. Network detection animation for the 2004 M6.0 Parkfield earthquake. Same
format as Movie S1.

Movie S3. Simulation of network detection with no earthquake. This movie shows simulation
with only smartphone triggers due to human motitimst are erroneously classified as an
earthquake. The active phones are shown as grsy \@hen they trigger they turn pink. They
remain pink for 20 sec, which is the duration ofdithe trigger remains in the network-detection
buffer. The grey circle has a 10 km radius; 4 &iggmust occur within a 10 km circle to initiate
a possible event declaration. No false earthquakectons occur.

Movie $4. Simulation of network detection for an M6 earthquake. Grey dots are stations;
pink indicates a trigger. The animation starts ¢ kefore the earthquake to show the noise
triggers already in our 20 sec association buffée red star is the true earthquake location with
grey circles at 10, 20 and 30 km. The algorithnedistthe earthquake 3 sec after the origin and
the estimated location is shown as a blue stars iBhone of the 1000 simulations with N=400
stations.



