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Large magnitude earthquakes in urban environments continue to kill and injure tens to hundreds of thousands of
people, inflicting lasting societal and economic disasters. Earthquake early warning (EEW) provides seconds to minutes
of warning, allowing people to move to safe zones and automated slowdown and shutdown of transit and other
machinery. The handful of EEW systems operating around the world use traditional seismic and geodetic networks
that exist only in a few nations. Smartphones are much more prevalent than traditional networks and contain accel-
erometers that can also be used to detect earthquakes. We report on the development of a new type of seismic system,
MyShake, that harnesses personal/private smartphone sensors to collect data and analyze earthquakes. We show that
smartphones can record magnitude 5 earthquakes at distances of 10 km or less and develop an on-phone detection
capability to separate earthquakes from other everyday shakes. Our proof-of-concept system then collects earthquake
data at a central site where a network detection algorithm confirms that an earthquake is under way and estimates the
location and magnitude in real time. This information can then be used to issue an alert of forthcoming ground shaking.
MyShake could be used to enhance EEW in regions with traditional networks and could provide the only EEW capability
in regions without. In addition, the seismic waveforms recorded could be used to deliver rapid microseism maps, study

impacts on buildings, and possibly image shallow earth structure and earthquake rupture kinematics.

INTRODUCTION

Large magnitude earthquakes in densely populated regions do not occur
very frequently, but they can kill tens to hundreds of thousands of people,
injure many more, and cause substantial financial loss (I). Earthquake
early warning (EEW) systems can detect the location and magnitude of
an earthquake in a few seconds and issue a warning to the target area
before the damaging waves arrive (2, 3). This new technology can re-
duce the fatalities, injuries, and damages caused by earthquake, doing so
by alerting people to take cover, slowing and stopping trains, opening ele-
vator doors, and many other applications (4). The development of EEW to
date has largely focused on the use of traditional seismic and geodetic net-
works, which exist only in a handful of countries around the world (5).
Smartphones are much more prevalent and have a variety of built-in sen-
sors and communications. There were 2.6 billion smartphones worldwide
in 2014, and this number is expected to pass 6 billion by 2020 (6). Here,
we report on the development of MyShake, a crowdsourcing project (7), to
harness the accelerometers in personal smartphones to record earthquake-
shaking data for research, hazard information, and EEW.

We built MyShake on other crowdsourcing projects in seismol-
ogy. The Quake-Catcher Network (QCN) and Community Seismic
Network (CSN) primarily use low-cost microelectromechanical system
(MEMS) accelerometers that plug into computers and can be installed
in buildings to detect earthquakes (8, 9). These networks consist of a few
hundred to a few thousand accelerometers and are limited by the need
to pass hardware from the network operators to the users. By using the
sensors in smartphones, we only need to pass software from the network
operators to users, which is relatively simple using the Google Play and
iTunes store. The CSN also explored the use of smartphone acceler-
ometers by asking whether newly incoming data are similar to previ-
ously defined human activities. If not, the data are treated as an
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anomaly and communicated to a processing center where a picking
algorithm will determine if the data represent an earthquake or not
(10, 11). Our MyShake design is different in that we use past earthquake
information to develop a classifier algorithm to identify earthquake
shaking on a single phone and then communicate with a centralized pro-
cessing center (CPC). Previous work has also demonstrated that the Global
Positioning System (GPS) sensors on smartphones (rather than the accel-
erometer) can be used to detect earthquakes and potentially provide a
warning (12). To date, this has been shown to be possible on dedicated
smartphones but not on personal smartphones. Another crowdsourcing
project is using twitter to detect earthquakes. A tweet-frequency time se-
ries constructed from tweets containing the word earthquake in various
languages and an algorithm is used to identify possible earthquakes (13).
Finally, the U.S. Geological Survey “Did You Feel It” system is a web-based
approach for collecting reports of shaking and damage as experienced by
individuals. The reports are converted into intensity and used to generate
detailed shaking intensity maps when enough people report (14, 15).
The intensity estimate relies on subjective descriptions by the reporter.
By using smartphone sensors, MyShake uses the power of crowdsourcing
while also reporting shaking time series and accurate locations.

The MyShake network builds on initial work at the University of
California (UC), Berkeley that determined the quality of the acceler-
ometers in smartphones (16). We have extended this work to develop
an android-based application that runs efficiently on the users’ smart-
phone and detects whether the movement of a phone is likely caused
by an earthquake or by other human activities. The application sends
this information back to our processing center where a network detec-
tion algorithm confirms that an earthquake is under way. The location,
origin time, and magnitude of the earthquake are then determined on the
basis of multiple triggers from the network of phones. This information
can be used to estimate the shaking intensity and the remaining time
until damaging waves arrive at a target location. Here, we detail (i) size
and proximity requirements for earthquake signals to be recorded by
smartphones, (ii) development of our on-phone detection capability
to distinguish earthquakes from other shakes, and (iii) the design of
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a network detection algorithm to operate at the processing center to
confirm when an earthquake is under way, and to locate and charac-
terize it. This has been achieved within the real-world constraints of
building an android application that runs in the background on private
phones without draining power.

RESULTS

To better understand which earthquakes we can record on smartphones,
we determined the noise floor (17) of the accelerometers on multiple
android phones by placing them in a basement and allowing them to
record for 1 month. The noise floor of the phones contains the internal
noise of the phone itself plus other environmental sources in a quiet
basement. Once this level is known, we can assess the necessary size of
earthquakes such that the ground-shaking amplitude exceeds the noise.
Figure 1 compares the noise floor of the test phones to the amplitude of
shaking for various magnitude earthquakes at 10 km (I8). All phones are
sensitive to the shaking for magnitude 5 (M5) or larger earthquakes at
10 km or less from the phone in the frequency range of 1 to 10 Hz, and
all are capable of recording the longer periods of larger magnitude
events. There is a gradual improvement in the sensor capabilities with
the release date of the phone (see the color change from cold to warm).
The more recent phone models are sensitive to shaking for M3.5 at 10 Hz.
The in-phone accelerometers can record shaking for the earthquakes
that do damage in the frequency range that causes most damage (1 to
10 Hz). Also, we expect the quality of the sensors in phones to improve
further with time. The HP MEMS accelerometer (blue; Fig. 1) was re-
cently developed for seismic imaging applications (19). It is currently too
expensive for inclusion in smartphones but illustrates that MEMS sen-
sors can have similar capabilities to more traditional strong motion
sensors [Berkeley Seismological Laboratory (BKS) station; Fig. 1].
Next, we determined how well phones can record the true shaking
during an earthquake. Both the quality of the sensor and how well the
phone is coupled to the ground play key roles here. To anwser this

question, we put multiple phones on shake tables some bolted to
the table, and others not bolted down and able to slide freely. Our
results confirm previous findings (16, 20) that phones bolted to shake
tables are capable of recording ground motion accurately between 0.5
and 10 Hz. We also tested phones placed freely on the shake table be-
cause personal phones are not bolted to the ground. Figure 2 shows a
three-dimensional (3D) shake table test with the peak acceleration of
0.5¢. The phone under testing had some relative motion with the ta-
ble, but minimal. We can see that the waveform of the phone and the
reference accelerometer are very similar, and the frequency response of
the phone acceleration is good from 0.5 to 10 Hz. In a 1D shake table
test with a sweep signal (gradually increasing amplitude and frequen-
cy), we found that it was not until the horizontal accelerations reached
a specific threshold, in this case ~0.3g and above ~3 Hz, that we
started to see sliding. When the phones slid, it had the effect of clip-
ping the peak amplitudes, although the frequency content remained
similar (Fig. 3). This is a limitation of the data recorded, and we must
recognize that recorded amplitudes are lower bounds on the actual value.

Given that a smartphone can record earthquake shaking, the key chal-
lenge for a smartphone network using private/personal phones is the ability of
installed phone applications to separate earthquake shaking from everyday
motion of the phone. Figure 2A shows 12 hours of three-component accel-
eration data that were recorded on a smartphone. The figure shows both hu-
man activities and the M6.0 Napa earthquake on 24 August 2014 (21) at the
very end of the waveform. Figure 2B shows the zoomed-in view of the accel-
erations associated with the Napa earthquake recorded on the same phone.

To develop an algorithm to separate earthquake shaking from hu-
man activities, we first developed an application for android smart-
phones to trigger on significant motions and send the data to a CPC.
It has been designed for distribution to personal/private phones and has
a trigger algorithm that runs in the background, continuously monitoring
the accelerometer. It uploads parameters and data to our CPC when
triggered. Functionality at the CPC allows us to (i) monitor and change
the operational parameters on the users’ phones, (ii) collect heartbeat
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Fig. 1. Noise floor of the phones. Noise floors of the smartphones color coded by the phone release date (also shown in the legend as MM/YY). Dashed
black lines are typical ground motion amplitudes of earthquakes 10 km from the epicenter for various magnitudes. Noise floor for high-quality MEMS sensor

(HP MEMS, blue) and a typical force-balance accelerometer from a regional ne
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twork (BKS in northern California, purple) are also shown.
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Fig. 2. 3D shake table test. The input seismogram is from a real earth-
quake that has been modified for |IEEE-693-2005 tests. (A) Waveform
comparison between phone (blue) and reference accelerometer (red) re-
cordings from an input signal that has peak acceleration of 0.5g. (B) Spec-
trum comparison of Y components. The X and Y components are in the
plane of the phone, which is lying flat on the horizontal shake table and
is not attached. The Z component is perpendicular to the plane of the
phone and is vertical for this test.

and state-of-health information from the phones, (iii) collect autonomous
phone-trigger information, (iv) trigger phones from CPC to record data,
and (v) upload waveform data for autonomous and CPC triggers. A small
release of MyShake in November 2014 deployed the application on 75
phones (fig. S1). A key issue for a crowdsourcing application to be suc-
cessful is minimizing the impact on the users: for phones, this means
minimizing power usage. The MyShake application currently uses about
the same power that a smartphone uses when it is on but is not being
used. For most users, a phone running MyShake does not need to be
charged more than once every 24 hours.

Using the data collected, we developed an artificial neural network
(ANN) approach to identify the different characteristics of earthquake
and human motions (see the Supplementary Materials for details).
The algorithm assesses 2-s windows of data and determines if the mo-
tion is likely an earthquake or not. We first train our algorithm with
data from three sources: everyday motion recordings uploaded to
our CPC from the MyShake release as described above, phone record-
ings of earthquakes from shake table tests, and seismic data from tra-
ditional networks in Japan that were modified to reproduce
smartphone-quality records, which are described in the Supplementary

Kong et al. Sci. Adv. 2016;2:e1501055 12 February 2016

Materials. We tested a total of 18 characteristics identifying the three best
features: the interquartile range of the acceleration vector sum (IQR), the
maximum zero crossing rate (ZC), and the cumulative absolute velocity
of the acceleration vector sum (CAV). IQR is an amplitude parameter
that shows the middle 50% range of amplitude of the movement. ZC is
a simple frequency measure that counts the number of times that the
signal crosses baseline zero. CAV is a cumulative measure of amplitude
on the three components in the time window and is determined as follows:

CAV = [ola(0)ldi (1)

where a(f) is vector sum of the three-component acceleration.

Figure 4C shows how IQR (a measure of amplitude) and ZC (a measure
of frequency) separate earthquakes from non-earthquake motions. Earth-
quakes are high frequencies with moderate amplitudes, whereas everyday
motions are lower frequencies but high amplitudes or very low ampli-
tudes but high frequencies. The IQR and ZC are the best two parameters
to separate earthquakes from ordinary motion, but adding CAV can pro-
vide some additional information to help improve performance (Fig. 4D).

The trained ANN algorithm is then applied to U.S. earthquake data
modified to phone-quality records as well as to a separate set of
everyday motion data (Table 1). Ninety-eight percent of the earthquake
records within 10 km of the events are recognized as earthquakes; the suc-
cess rate reduces with increasing distance and decreasing magnitude as
expected. Ninety-three percent of the everyday motions are correctly re-
cognized, meaning that for an operational system, we expect ~7% of
phone triggers to be false (earthquake) triggers.

The final component of our system is a network detection algorithm
running at the CPC to confirm when an earthquake is under way and
to estimate source parameters from multiple triggered phones in a
region. When a phone determines that it is recording an earthquake,
two types of data are passed to the CPC: (i) the trigger information
including trigger time, phone location, and the maximum amplitude
of the three components and (ii) the waveform data that contain
three-component acceleration from 1 min before the trigger to 4 min
after. The trigger information is easier to upload rapidly via cellular
or Wi-Fi networks and is what we use for real-time processing. The
waveform data are currently uploaded with a lower priority and only
uploaded when the phones are connected to Wi-Fi and power.

Our first-generation network detection algorithm is based on current
EEW ElarmS-2 methodologies (22). It searches for a temporal and spa-
tial cluster of triggers and requires greater than 60% of operating active
phones to have triggered within a 10-km radius region for an event to
be declared (see the Supplementary Materials for details). Once an event
is created, the algorithm will continue to update the origin time, location,
and magnitude of the earthquake based on the continuous flow of
trigger information. Currently, the origin time is set to the earliest
trigger time, and the centroid of the all the triggered phones within 10
km of the phone trigger is used as the epicenter. Our first-generation
magnitude estimation is based on expected ground-shaking amplitude
as a function of distance. We use the peak ground acceleration (PGA)
and the distance of the station to estimate the magnitude using the
following regression relation based on the earthquake data from Japan
that were modified to reproduce smartphone-quality records

Meyt = 1.352 x log(PGA) + 1.658 x log(distance) + 4.858 (2)

where PGA is the maximum absolute amplitude from the three-
component acceleration, and distance is the epicentral distance derived
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Fig. 3. Shake table test with an input sweep signal (0.5 to 7 Hz). (A) Waveform comparison between a phone fixed on the table (blue), a phone placed
freely on the table (black), and the reference accelerometer attached to the table (red). (B) Frequency domain comparison of the signals in (A). (C) Cal-
culated correlation coefficient and RMS (root mean square) ratio between the signals recorded by the phone placed freely on the shake table and the
reference accelerometer. The correlation coefficient is a measure of the phase match, and RMS is a measure for amplitudes match. We used a 1-Hz fre-
guency band to filter the record and calculate the coefficient with a step frequency of 0.1 Hz. The x axis is the center frequency of the frequency band. The
correlation coefficient shows how well the phase is recorded by the phone, and the RMS ratio shows the amplitude recovery. Above 2 to 3 Hz, the phone starts
to slide, so the full amplitude is not recovered; however, the phase is recovered up to 7 to 8 Hz.

from the phone location and estimated location of the earthquake.
Figure 5 compares estimated magnitude and the real magnitude for
both individual phone (blue dots) and the average event estimates (red
pluses). We can see that most of the estimated magnitudes are within
1 magnitude unit for individual phone, and all average event estimates
are within 1 magnitude unit. When the network consists of many more
phones, we might expect the uncertainty in the magnitude to be reduced.
However, we must also recognize that phone-based amplitude estimates
must be treated as lower bounds given the possibility of decoupling.
Given these uncertainties, it is clear that having even a single observa-
tion from a traditional seismic station could make a significant differ-
ence, providing some “ground truth” to the magnitude estimate.

The final step for an alert is to estimate the shaking intensity and time
until shaking at a user’s target location. This is relatively straightforward
using the estimated event epicenter, origin time and magnitude, the user’s
location, and S-wave travel time curves and ground motion prediction
equations (23) just as with the current EEW system in California.

It is a known problem that magnitude estimates based on peak
shaking observations from seismic stations saturate (24, 25): This will

Kong et al. Sci. Adv. 2016;2:e1501055 12 February 2016

also be a problem for MyShake. There are several possible improvements.
First, the smartphone-based magnitude estimate could be improved by
updating the magnitude on the basis of the area experiencing strong
shaking. Stronger magnitude earthquakes cause strong shaking over large
areas. Another possibility is to make use of GPS-based permanent ground
displacements as is being currently done with the more traditional
network-based early warning systems (26, 27). It was recently shown
that smartphone-based GPS observations could be used for EEW
(12). The challenge when using only GPS on smartphones is that
GPS is very power-hungry. A possible hybrid would be to start
monitoring the GPS on a phone when the MyShake classifier identifies
an earthquake. This could provide an updated magnitude estimate that
does not saturate and would not suffer from the power issues asso-
ciated with a GPS-only approach.

We applied the network detection algorithm in a simulated real-time
manner to phone-like triggers for U.S. earthquakes (Table 1). Almost
all stations close to the epicenter (within 10 km) were triggered. Figure
6 shows performance snapshots for the M5.1 La Habra earthquake
(28), which had the poorest success rate in triggering on individual
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Fig. 4. Earthquake recorded by phone and classifying earthquakes. (A) Example of 12-hour three-component acceleration record from a private/
personal Samsung Galaxy S4 phone starting at 4:00 p.m. (23 August 2014). It shows the accelerations of everyday human motions for the first ~8 hours, then
appears stationary during the night. The red box at the end of the figure highlights the time window of (B). (B) One minute of data from the period shown in
(A) at the time of the M6 Napa earthquake 38 km from the phone. The earthquake occurred at 3:20:44 a.m. local time. (C) Scaled feature plot showing IQR
versus ZC for the classifier training data set. The blue dots are the centroids of human activities, and the red dots are the earthquake features. (D) 3D plot of the
three features we used to distinguish earthquakes. Adding the CAV to IQR and ZC drags some of the human activates (blue dots) to the third dimension but
not the earthquake data, which helps improve the results. EW, east-west; NS, north-south; UD, up-down.

Table 1. Performance of the ANN algorithm. Performance of classifiers when applied to earthquake and non-earthquake data not used to train the ANN
algorithm. In the case of earthquake data, the percentage of records that were correctly classified as earthquakes is shown along with the number of records
(in parentheses) for various earthquakes recorded within various distances of the epicenter. For the everyday human activity data, the percentage correctly
identified as non-earthquake and falsely identified as earthquakes is shown.

Earthquake classification

Within 10 km

Within 20 km Within 30 km

1989 Loma Prieta M7

100% (2/2)

100% (4/4) 100% (11/11)

1994 Northridge M6.7

100% (4/4)

100% (19/19) 100% (29/29)

2004 Parkfield M6

95% (19/20)

90% (35/39) 86% (36/42)

2014 Napa M6

100% (2/2)

75% (6/8) 42% (10/24)

2014 La Habra M5.1

100% (13/13)

42% (22/52) 25% (30/120)

Human activity classification

Non-earthquake (correct)

Earthquake (false)

20150201-20150228

93% (3562/3823)

7% (261/3823)
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phone-like waveforms due to the relatively small magnitude compared
with other test earthquakes (Table 1). The figure shows the location of
the triggers at each time step clearly showing the radiating nature of the
ground motion and associated triggers. The earthquake is first identi-
fied 5 s after the origin time (Fig. 6B). The error in the initial magni-
tude estimate is 0.1 magnitude units, the location error is 3.8 km, and the
origin time error is 1.7 s (table S2). The performance of this MyShake simu-
lation is similar to the actual performance of the real-time ShakeAlert/
ElarmS EEW system (29), which issued its first alert 5.3 s after the origin
time with an initial magnitude error of 0.8, location error of 1.5 km, and
origin time error of 0.2 s. In reality, when we have a denser phone net-
work, we would expect the application to detect the earthquake faster.
Movies S1 and S2 show performance animations for the 2014 La Habra
and 2004 Parkfield (30) events, respectively.

We also conducted 1000 simulations that incorporate random human
activity triggers as well as earthquake triggers to explore system
performance for different densities of phones (see the Supplementary
Materials). We found good performance (similar to the La Habra exam-
ple) when there are 300 or more phones in a 111 x 111-km region,
corresponding to an average distance between phones of 6.4 km (table
S3). If the number of phones drops to 200 in the same region, then out
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Fig. 5. Estimated magnitude. Comparison of our estimated magnitudes
with the real magnitude for earthquakes in Japan using phone-like data. The
green lineis the 1:1 line, and the two gray lines are the 1 magnitude unit shift.
Each blue point is the magnitude estimate at a single simulated phone. The
red pluses are the average event estimates, which is the average of multiple
single phone estimates.

of 1000 simulations, we found 32 events that were not detected, that is,
3% of events were missed. In addition to missing some earthquakes, the
accuracy of the locations and origin times is degraded. We also con-
ducted a second group of 1000 simulations without earthquakes, just
false triggers. None of these generated a false event. This is because we
require >60% of active phones within a 10-km radius region to trigger
for an event declaration. Our ultimate design goal is to have much smaller
distances between active phones (less than 6.4 km), yet we must recog-
nize that the network algorithm will need to be modified to reflect the
active network, and these changes may need to happen in real time.

DISCUSSION

The MyShake project to date demonstrates proof of concept for a
smartphone-based seismic network that provides instrumental recordings
of ground shaking in damaging earthquakes and potentially delivering
EEW. What is key to this study is that the system has been designed
for and tested on privately-owned smartphones, of which there are bil-
lions. To harness the full potential of crowdsourcing, scientists must use
sensors that are already being used by consumers, develop systems that
can harness the data from these sensors with minimal impact to the
owners, and provide the owners with real benefits to participating.
MyShake uses the accelerometers on common smartphones, which is
freely available from the Google Play store for easy installation and
automatic update, and uses minimal power, meaning phones only need
to be recharged daily as commonly practiced, and participation leads
to delivery of earthquake hazard information and could include the
delivery of earthquake-shaking alerts. MyShake details and updates
can be found online (31).

In the future, existing EEW systems that use traditional seismic
and geodetic networks could benefit from MyShake just as MyShake
could benefit from integration of data from traditional networks. As
described above, observations from even one traditional seismic station
could help reduce uncertainties in MyShake earthquake estimates.
Likewise, a handful MyShake phone triggers could be used to confirm
a preliminary earthquake detection from one or two traditional net-
work station triggers; most traditional EEW systems require several
stations to trigger before issuing an alert. Finally, and perhaps most
importantly, MyShake could deliver alerts in regions that have little
in the way of traditional seismic networks. This includes Haiti and
Nepal that both had recent devastating earthquakes, and other high
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Fig. 6. Snapshots of trigger detections for the 2014 M5.1 La Habra earthquake simulation at 3, 5, and 7 s after the event origin time. Gray dots are
stations, and pink indicates a trigger. The true earthquake (EQ) location is the red star with circles at 10-, 20-, and 30-km radius. The blue star represents the
estimated event location first detected at 5 s. The magnitude estimate at each point in time is shown in the upper right.
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hazard regjons such as Iran, Afghanistan, Pakistan, Mongolia, Malaysia,
Indonesia, and the Philippines. As an example, the recent earthquakes
in Nepal are estimated to have killed more than 8000 people (32), in
part because there are only a handful of seismic stations in the region.
However, there are an estimated 6 million smartphones in Nepal
(33). On the basis of the 80-km separation of the M7.8 epicenter from
Katmandu where most of the fatalities occurred, a warning system
could provide ~20-s warning (see the Supplementary Materials).

Finally, MyShake is first and foremost a seismic network, for which
we have developed an early warning algorithm. The network could pro-
vide millions of seismic waveforms for a wide range of research activities
following large magnitude earthquakes in urban environments. These
could be used to generate microseism maps providing information about
local amplification effects that could be used to study the impact of the
shaking on buildings. The data could also potentially be used to image
shallow Earth structure beneath our cities and perhaps even to image
the earthquake rupture process itself.

MATERIALS AND METHODS

Data collection

The MyShake application was used to collect all smartphone data used
in this study. It can be installed on android phones to record acceler-
ation data. For the noise floor tests and shake table tests, MyShake re-
corded continuously and saved the data locally on the phone. The human
activity data were recorded using a trigger-based method, and 5 min of
data was collected when the phone satisfied the trigger we described in
the paper (see the Supplementary Materials for details).

Noise floor test

The noise floor tests were performed by putting smartphones in a quiet
basement on the Berkeley campus. The phones recorded continuously
for 1 month at 50 samples per second. The method used to calculate the
noise floor (Fig. 1) is as described by McNamara and Buland (17).

Shake table test

The shake table tests were conducted at the Pacific Earthquake Engineer-
ing Research Center. The phones recorded at 50 samples per second
continuously when the shake table simulated the earthquakes. A high-
quality reference accelerometer also installed on the shake table pro-
vided the reference traces. We then compared the recordings from
the phones and reference accelerometer in both the time and frequency
domain. During the tests, some phones were bolted on the shake table,
whereas the rest were placed freely on the table.

Single phone detection algorithm design

The earthquake detection algorithm running on the phones was designed
using past earthquake data (from traditional seismic networks but mod-
ified to be phone-like quality), shake table data, and human activity data
recorded on the smartphones. We used an ANN to design the algorithm
and to distinguish earthquakes from human activities. The processing of
data and steps are described in detail in the Supplementary Materials.

Network detection algorithm design

The network detection algorithm is designed on the basis of the current
ElarmS-2 methodologies (22). It searches for temporal and spatial clusters
of triggers from active phones. We tested the algorithm on both the sim-

Kong et al. Sci. Adv. 2016;2:e1501055 12 February 2016

ulated earthquake data and simulated trigger data (see the Supplementary
Materials for details).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/2/e1501055/DC1

Data collection: The MyShake application

Classifier analysis: Detecting earthquakes on a phone

Network detection algorithm

Estimate waring time for Katmandu, Nepal

Fig. S1. MyShake activity 1 November 2014 to 28 February 2015.

Fig. S2. Example earthquake record used to train the ANN classifier algorithm.
Fig. S3. Structure of ANN classifier algorithm.

Fig. S4. Receiver operating characteristic curve.

Fig. S5. Phone trigger times versus epicentral distance.

Table S1. Accuracy score for ANN classifier with 10-fold cross-validation.

Table S2. Simulated network detection performance for U.S. earthquakes.

Table S3. Simulated network performance for various phone densities.

Movie S1. Network detection animation for the 2014 M5.1 La Habra earthquake.
Movie S2. Network detection animation for the 2004 M6.0 Parkfield earthquake.
Movie S3. Simulation of network detection with no earthquake.

Movie S4. Simulation of network detection for an M6 earthquake.
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