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Assessing the Sensitivity and Accuracy of the
MyShake Smartphone Seismic Network to
Detect and Characterize Earthquakes
by Qingkai Kong, Sarina Patel, Asaf Inbal, and Richard M. Allen

ABSTRACT

MyShake harnesses private and personal smartphones to build a
global seismic network. It uses the accelerometers embedded in
all smartphones to record groundmotions inducedby earthquakes,
returning recorded waveforms to a central repository for analysis
and research. A demonstration of the power of citizen science,
MyShake expanded to six continentswithindaysof being launched
andhas recorded757 earthquakes in the first 2 yr of operation.The
data recorded byMyShake phones have the potential to be used in
scientific applications, therebycomplementing current seismicnet-
works. In this article, we (1) report the capabilities of smartphone
sensors to detect earthquakes by analyzing the earthquake wave-
forms collected byMyShake; (2) determine the maximum epicen-
tral distance at whichMyShake phones can detect earthquakes as a
function of magnitude; and (3) then determine the capabilities of
theMyShake network to estimate the location, origin time, depth,
andmagnitudeof earthquakes. In the caseof earthquakes forwhich
MyShake has provided four or more phases (P- or S-wave signals)
and an azimuthal gap<180° (21 events), the median (± standard
deviations) of the location, origin time, and depth errors are 2.7
(�2:8) km, 0.2 (�1:2) s, and 0.1 (�4:9) km, respectively, relative
to theU.S. Geological Survey global catalog locations. Magnitudes
are also estimated and have a mean error of 0.0 and standard
deviation of 0.2. These preliminary results suggest that MyShake
could provide basic earthquake catalog information in regions that
currently have no traditional networks. With an expanding
MyShake network, we expect the event detection capabilities to
improve and provide useful data on seismicity and hazards.

Supplementary Content: Figures showing earthquake parameter
estimations for the 44 events that have more than four phase
pickings to support the article and a collection of selected seis-
mic waveforms recorded by MyShake users.

INTRODUCTION

After more than a century of development, geophysical instru-
mentation has become increasingly more diversified. High-

quality seismic instruments (Havskov and Alguacil, 2016), geo-
detic instruments (Larson, 2009), and Interferometric Synthetic
Aperture Radar (Bürgmann et al., 2000) enable new discoveries
and understanding of earthquake physics and active tectonics. In
addition, the emergence of various new low-cost and potentially
more pervasive sensing technologies provides new ways of
detecting earthquakes, collecting additional data to learn about
the earthquake process, and potentially making important con-
tributions to seismology (Allen, 2012).

Citizen science has expanded the ability to assess and
respond to earthquake hazards. “Did You Feel It?,” a U.S.
Geological Survey (USGS) earthquake survey platform, collects
macroseismic intensity data from Internet users, which are then
used to generate intensity maps immediately after earthquakes
(Wald et al., 2001; Wald and Dewey, 2005; Atkinson and
Wald, 2007). Twitter messages from users who felt an earthquake
can be used to detect and characterize events in real time (Earle,
2010; Earle et al., 2010; Sakaki et al., 2010). By monitoring traf-
fic to its website, the European–Mediterranean Seismological
Centre can detect and assess the effect of an earthquake within
a few minutes (Bossu et al., 2012). Low-cost micro-electro-
mechanical systems (MEMS) sensors inside computers or placed
in specially installed stand-alone boxes in homes or offices can be
used to monitor and study earthquakes (Cochran et al., 2009;
Chung et al., 2011; Clayton et al., 2012, 2015; Hsieh et al., 2014;
Wu, 2015;Wu et al., 2016; Jan et al., 2018). Distributed acoustic
sensing transforms telecommunication fiberoptic cables into
seismic arrays, enabling meter-scale recording over kilometers
of linear fiber length (Dou et al., 2017; Lindsey et al., 2017).

Asmore andmorepeople have access to andaneed for smart-
phones these small devices comprise an evermorewidespread and
dense sensing network around the globe. Seismologists have
learned that smartphones can be used in different ways to detect
earthquakes. For example, by monitoring when users turn on a
specific earthquake application on their phone, earthquakes can
be recognized within minutes as clusters of application activity
(Bossu et al., 2015, 2018; Steed et al., 2019). The MEMS sensors
inside the smartphones that record acceleration have also been
shown to be capable of detecting earthquakes (Faulkner et al.,
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2011; Dashti et al., 2012, 2014; Kong et al., 2015; Finazzi, 2016;
Kong, Allen, Schreier, et al., 2016).

MyShakewas launched byUniversity of California, Berkeley,
in 2016 as a citizen science project. It aims to build a
global smartphone seismic network that can be used for research,
ultimately contributing to a reduction in earthquake hazards. In
the first 2 yr, just under 300,000 people downloaded theMyShake
app globally. Now, 2 yr after the launch, there are 40,000 phones
with the app installed, and on any given day,∼7000 phones con-
tribute data. The core of MyShake is an artificial neural network,
built into the on-phone app, that is trained to recognize earth-
quake-like movement and distinguish it from everyday human
movements and a series of machine learning models that support
the confirmation and estimationof the earthquakes (Kong, Allen,
Schreier, et al., 2016; Kong, Inbal, et al., 2019). Whenever the
phone detects the earthquake-like movement, a real-timemessage
with the trigger location, time, and amplitude is sent to the server
for earthquake early warning purposes. At the same time, a 5 min
segment of three-component acceleration data is stored on the
phone and then uploaded to the MyShake server to be analyzed
when the phone connect to power and Wi-Fi. The time series
starts 1 min before the trigger is detected and continues for
4 min post-trigger. Data collected by MyShake can be used in
various applications. Kong, Allen, and Schreier (2016) show
examples of the waveform data recorded byMyShake, illustrating
the potential to use them in different seismological applications.
Real-time trigger data fromMyShake users show earthquake early
warning can be done using the smartphones (Kong, Inbal, et al.,
2018). The MyShake waveform data can also potentially be used
to monitor the structural health state of buildings (Kong, Allen,
et al., 2018). In addition, using theMyShake arrays, the system can
potentially detect microseismicity and monitor noise in urban
areas (Inbal et al., 2019).

In this article, we explore the capabilities of the MyShake
smartphone seismic network by mining the archive waveforms
recorded to date. Comparing these data with a global earthquake
catalog, we explore the detection capabilities of the smartphone
network. We explore the sensitivity of the network by determin-
ing the distance to which smartphones can detect an earthquake
as a function of magnitude. We also show how the waveforms
recorded byMyShake phones can be used to estimate basic earth-
quake parameters, including location, origin time, depth, and
magnitude of the earthquake. This illustrates how the MyShake
network could be used to monitor earthquake activity in regions
of dense populations that currently have no seismic network.
Even though the number of users in the MyShake network is
large, it still has many limitations and challenges before it can
be used as a routine seismic network. These include users losing
interest in the app, phones moving around, phones clustered in
cities, and so on. We discuss some of these challenges in the
Discussion section.

DATA USED

The dataset used in this article comes from global MyShake
users. As described in detail by Kong, Allen, Schreier, et al.

(2016), the MyShake application has a two-stage triggering
algorithm. In the first stage, a simple short-term average and
long-term average algorithm is used to determine when a pre-
vious stationary phone moves (Allen, 1978). An artificial neu-
ral network (ANN) algorithm is used to determine whether
the movement of the phone is likely caused by an earthquake
or by other human activities. When the movements satisfy the
ANN algorithm and are determined to be earthquake-like
motion, the phone records a 5 min segment of three-compo-
nent acceleration data that is uploaded to the MyShake servers
when the phone is next connected to Wi-Fi and power. An
earthquake waveform database is then created from the
uploaded waveforms. First we scan for “candidate events” in
the USGS Comprehensive Earthquake Catalog (ComCat).
For each candidate event, we search the MyShake waveform
archive for records within a predefined spatiotemporal window
for possible earthquake recordings. Waveforms that meet the
requirements of the aforementioned spatial–temporal window
are reviewed by a seismologist to filter out those caused by
human activities and to remove any bad data (e.g., missing
blocks of data). Waveforms that pass all the checks are put into
the earthquake waveform database. In the first 2 yr, 757 earth-
quakes have had at least one recording from a MyShake user.

Figure 1a shows the location of earthquakes for which one
or more seismic waveforms (confirmed by a seismologist) were
uploaded from MyShake phones. Figure 1b shows the magni-
tude–frequency relationship of events recorded by MyShake
and a comparison with the USGS ComCat. For all the mag-
nitude bins, MyShake records fewer events than the traditional
seismic networks. The gap becomes smaller for larger magni-
tude events, indicating that with increasing magnitude,
MyShake’s capability to detect events improves, not surpris-
ingly. Waveforms uploaded to our server are three-component
acceleration waveforms in 5 min segments (1 min before the
trigger and 4 min after), sampled at about 25 Hz. Figure 2
shows epicentral distances of the earthquake waveforms
recorded by MyShake users for earthquakes of various magni-
tudes. As the magnitude of the earthquakes increases, the dis-
tance from which smartphones can record useful waveforms
also increases. To understand at what range we expect
MyShake phones to record earthquake waveforms, we fit an
analytic expression to the farthest recordings in each magni-
tude bin using least-squares regression. For earthquakes of
M 2.5 toM 7.1, using 1000 bootstrap resampling with replace-
ment, we derived the following relationship between the mag-
nitude of the earthquake and the distance in kilometers from
which we expect to see recordings from current MyShake users
(parameters shown here are the median value of the 1000 boot-
strap resampling process):

EQ-TARGET;temp:intralink-;df1;311;157R � 114e0:283M − 216 �2:5 ≤ M ≤ 7:1�; �1�

in which M is the magnitude and R is the epicentral distance
for the earthquake. The equation is shown as the red curve in
Figure 2, and the light-gray curves are the result of the 1000
bootstrap resampling process. The small inset in Figure 2
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▴ Figure 1. (a) Earthquakes with one or more useful waveform recordings from MyShake phones in the first two years of operation (12
February 2016 to 12 February 2018). The size of the circle and colors represent magnitude and depth of the earthquake (both magnitudes
and locations are from the U.S. Geological Survey [USGS] Comprehensive Earthquake Catalog [ComCat]). (b) Earthquake magnitude–
frequency relation for earthquakes detected by MyShake (blue triangles) and in the USGS catalog (red circles). The number of events
is measured in 0.5 magnitude bins. The color version of this figure is available only in the electronic edition.
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shows the cumulative distribution of the signal-to-noise ratio
(SNR) for all the earthquake waveforms from MyShake users.
The SNR is calculated on the Y-component by selecting a 2 s
window of signal centered on the peak observed ground accel-
eration (PGA) value and a 2 s window of noise from the begin-
ning of the waveform before the seismic trigger. Using the 2 s
window for the signal and noise, we calculate the square of the
root mean square amplitude and take the ratio. The 25th, 50th,
and 75th percentiles of the SNR are 6.1, 14.6, and 50.9, respec-
tively, for the MyShake recorded earthquake waveforms.

Figure 3 shows examples of six three-component wave-
forms recorded around the globe by MyShake phones. We
show examples from regions that do not have dense seismic
networks (additional waveforms are available in the Ⓔ supple-
mental content). Whereas the X and Y components of the
acceleration records are parallel to the short and long directions
of the phone screen, the Z component is the direction
perpendicular to the phone screen. On most of these wave-
forms, we can see clear P and S waves. Because we also archive
1 min of data before a phone trigger, even when the phone
triggers on the S phase (because of low SNR for the P wave),
we can often still observe a P-wave arrival time.

TIMING AND LOCATION ACCURACY OF
SMARTPHONE RECORDS

The accuracy of the absolute time and location associated with
seismic waveforms is central to the applications and research
for which the data can be used. Unlike traditional seismic sta-
tions, MyShake sensors are moving around and they do not
have continuous Global Positioning System (GPS)–based time.
We therefore must develop strategies to improve on the nor-
mal timing and location information provided by the phone
operating system to the MyShake app.

The internal phone time is insufficiently accurate as a time
stamp for seismological applications of the data because it can
be off by many seconds (Table 1). Instead, the MyShake app
uses network time protocol (NTP) to check in with a remote
server and obtain the accurate absolute time. During normal
operation, the MyShake app requests an NTP time stamp every
hour, and the system stores this information on the backend.
The statistics collected include the server time of each query,
the roundtrip time for the phone’s NTP query to reach and
return from the server, and the offset in milliseconds of the
server time relative to the phone’s internal time when the query
was initiated. The total actual offset between the phone’s inter-
nal time and true NTP time (true offset) was calculated as the
recorded offset minus half of the roundtrip query time. We
assume that it takes half of the roundtrip time for the query
to reach the server.

We randomly selected 26 days from our database over a
12-month period beginning in August 2016. These 26 days
encompass 6.4 million usable records of a successful NTP
query by a phone running MyShake. Table 1 shows the distri-
butions of these time observations. Fifty percent of queries
reported an internal time better than 0.723 s, and 75% were

better than 1.59 s (true offset). The roundtrip time of an NTP
time query is typically an order of magnitude smaller than this;
50% are better than 0.081 s, and 75% are better than 0.131 s.

MyShake does not attempt to correct the internal time of
the phone. Instead we use the NTP times to correct the abso-
lute timestamps associated with trigger messages and any
recorded waveforms, that is, we apply the calculated true offset
time to the internal phone timestamp for the records we
collect. Therefore, the accuracy of the timestamp associated
with a MyShake waveform is determined by how much drift
there has been to the internal phone time between the last
NTP query and the time the phone triggers and records a
waveform. To assess the accuracy of these timestamps, we cal-
culate the change in the true offset values from one NTP query
to the next. Figure 4 shows the distribution of the change in
true offset values reported by phones during the 26 days
sampled. Fifty percent of the cases have a change in true offset
less than 0.027 s, 75% are better than 0.132 s, and 90% are
better than 0.503 s (Table 1). The magnitude of the changes
increases—and therefore the accuracy of the timestamps
decreases—as the time elapsed between NTP queries increases.
If queries occur 1–10 min apart, the offset changes by<0:015 s
50% of the time; this metric becomes<0:029 when queries are
∼30min apart and <0:064 s for ~hourly queries.

To provide location information, MyShake requests users’
permission to collect GPS locations from participating phones.
To assess the accuracy of smartphone GPS systems in the

▴ Figure 2. Epicentral distance of all MyShake earthquake
waveform recordings as a function of magnitude (blue dots).
The red curve is equation (1), which approximates the maximum
distance to which MyShake phones can trigger and detect earth-
quakes; the shaded lines are 1000 bootstrap with replacement
approximations. We only searched for waveforms corresponding
to earthquakes M ≥ 2:5 in the USGS catalog. The inset on the top
left is the cumulative distribution of the signal-to-noise ratio (SNR)
for all the earthquake recordings measured on one horizontal
component (Y component). The color version of this figure is
available only in the electronic edition.
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▴ Figure 3. Example three-component acceleration waveforms from MyShake detections globally. The black line is the event origin time
from the USGS catalog; green and red lines are estimated P and S arrival time using ak135 (Kennett et al., 1995). The zero time on each
panel is the time when the phone triggers. E, east; NE, northeast; NNE, north-northeast; SE, southeast; SSE, south-southeast; SSW, south-
southwest; WNW, west-northwest. The color version of this figure is available only in the electronic edition.
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MyShake use case, we conducted a test approximating typical
conditions for a stationary phone monitoring for an earth-
quake signal. In a six story building, 10 smartphones were
placed on a second floor windowsill facing into a partially shel-
tered courtyard with a limited view of the sky. We elected to
use a windowsill (rather than a location more interior to the
building) so we could determine the accurate true location of
the phones by determining the location of the side of the build-
ing in Google Earth. The phones were left stationary so they
could enter into steady mode before being manually prompted
to trigger, causing a seismic waveform to be recorded and the
location of the phone and waveform reported as it is in normal
MyShake operation. Figure 5 shows the distribution of hori-
zontal and vertical (elevation) errors based on 98 triggers, with
significant percentiles tabulated in Table 1.

For 50% of triggers, the horizontal location is within 14 m
of the true location. For reference, the reported accuracy of
basic C/A-code positioning with good sky view is ∼5–10 m.
It is within 28.8 m 75% of the time in our test and within

43.6 m 90% of the time (Table 1). Whereas a typical home has
a footprint 10 m across, office buildings might have a 50 m
footprint. This means that the location information is of the
same order as the size of buildings, and there is the potential to
group waveforms by building or building type to both observe
and correct for building amplification factors. The on-phone
API providing trigger location information also provides a
horizontal accuracy metric. As can be seen in Table 1, our
observed errors are consistent with the reported accuracy.

The elevation is within 3.9 m of the true value 50% of the
time. The typical floor spacing of a multistory building is
∼4 m. Therefore, our results suggest that it is possible to esti-
mate, within plus or minus one story, on which floor a phone
was located when it recorded a waveform 50% of the time; 90%
of the time, the error is within 34.1 m. This is equivalent to
∼8:5 floors. This error is still small enough to allow for a quali-
tative estimate of whether a phone is located near the bottom,
middle, or top of a tall skyscraper building. Such an estimation
is useful in identifying cases in which the free oscillations of a

Table 1
Summary of the Location and Timing Accuracy for MyShake Triggers and Waveforms

Measurements 50th Percentile 75th Percentile 90th Percentile
Offset of internal phone clock (s) 0.723 1.59 20.8
NTP query roundtrip time length (s) 0.081 0.131 0.251
Accuracy of waveform and trigger timestamps (s) 0.027 0.132 0.503
Measured horizontal location error (m) 14.0 28.8 43.6
Reported horizontal location accuracy (m) 19.5 20.8 45.3
Measured elevation error (m) 3.9 11.4 34.1

NTP, network time protocol.

▴ Figure 4. Accuracy of MyShake waveform and trigger timestamps. The histogram shows the change in phone timing offsets extracted
from the network time protocol synchronization process. Data are from 26 random days between August 2016 to August 2017. The dashed
lines mark the 50th, 75th, 85th, 90th, and 95th percentiles of the distribution. Note that the vertical scale is logarithmic. The color version of
this figure is available only in the electronic edition.
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building produce an amplification effect to the signals
MyShake records. The distributions of the horizontal and ver-
tical location errors are shown in Figure 5.

ESTIMATING EARTHQUAKE SOURCE
PARAMETERS

We use the earthquake waveforms recorded by MyShake to
locate events and estimate the magnitude. In this section,
we focus on the accuracy of source parameter estimation for
events that have seismic waveforms with good azimuthal cover-
age, that is when the largest azimuthal gap between stations is
<180°. This is the case for 21 events in our dataset. The results
of location and magnitude estimation for all events for which
we have four or more seismic phases (regardless of the azimu-
thal coverage) detected are shown in theⒺ supplemental con-
tent. The locations of these events are also shown in the
Ⓔ supplemental content.

METHODS

First, we manually pick the P and S phases. We use
Hypoinverse (Klein, 2002) to determine the location, depth,
and origin time of the earthquake. Hypoinverse requires an
initial location and origin time as the input. For this test,
we use the geometric mean of the triggers as the initial location,
and the initial origin time is set to 5 s before the first trigger
time. We tested a total of 28 homogeneous velocity layer mod-
els within Hypoinverse and found that the following model in
Table 2 yields good results for most of the events we test. We
can only estimate the location and magnitude when there are
four or more phase picks (either P or S or mixed) available.

To estimate the magnitude, we apply the ML relationship
of Bakun and Joyner (1984). This relation estimates local mag-
nitude from the distance, the peak to peak amplitude, and the
time span from peak to peak. As shown in Kong, Allen, and
Schreier (2016), MyShake recordings typically have larger
amplitude than free-field stations at the same epicentral

▴ Figure 5. Accuracy of smartphone location using Global Positioning System (GPS) points reported with MyShake triggers and seismic
waveforms, both (a) horizontal and (b) vertical. Ten phones were placed on a second-floor windowsill facing into a partially sheltered
courtyard and periodically prompted to collect a spontaneous trigger and record a waveform. The resulting 98 GPS points cluster closely
around the true location, both horizontally and vertically. The color version of this figure is available only in the electronic edition.

Table 2
Velocity Model Used in the Estimation of the Location, Origin Time, and Depth of the Earthquake Using the Manually Picked P-

Wave and S-Wave Arrivals

Top Depth of the Layer (km) P Velocity (km= s) S Velocity (km= s)
0.0 3.57 2.04
1.5 5.35 3.06
5.1 5.83 3.33
15.0 6.86 3.92
29.0 7.95 4.54

Except for the 3 September M 5.8 2016 Oklahoma event, for which we use the velocity model described in Grandin et al. (2017).

Seismological Research Letters Volume 90, Number 5 September/October 2019 1943

Downloaded from https://pubs.geoscienceworld.org/ssa/srl/article-pdf/90/5/1937/4825050/srl-2019097.1.pdf
by rallen 
on 11 October 2019



distance. But the characteristics of the ground motion in terms
of amplitude and frequency are preserved well compared with a
nearby seismic station. In addition, shake table tests (Dashti
et al., 2012; Kong, Allen, Schreier, et al., 2016) show that the
sensors inside the smartphones can recover the ground motion
very well. Therefore, we scale the PGA amplitude of the
MyShake recordings by dividing the observed amplitude by
a factor of 1.6. This factor is derived from all the MyShake
recordings.

Figure 6 shows the results for the 21 events that have good
azimuthal coverage (maximum gap in azimuthal coverage is
<180°). The median errors in the location measured as distance
from the USGS catalog location in the origin time and
the depth are 2.7 km, 0.2 s, and 0.1 km, respectively, with stan-
dard deviations of 2.8 km, 1.2 s, and 4.9 km. Most events have
distance errors that are<5 km. The larger errors are typically for
events with only a small number of phase picks. In this case,
three of the five events with distance errors >5 km have only
four picks. The MyShake magnitude estimates from these events
are compared with USGS catalog magnitudes in Figure 7. The
mean and standard deviation of the magnitude error are 0.0 and
0.2, respectively. All these events have the errors <0:5 units. See
Ⓔ Figures S1 and S2 for the errors in location, origin time, and
magnitude of all 44 events, including the ones have limited cov-
erages in the supplementary content.

We illustrate MyShake source parameter estimation with
four events from California, Oklahoma, and Morocco (errors
are shown in Table 3). The 10 June M 5.2 2016 Borrego
Springs event and the 4 January M 4.4 2018 Berkeley event
occurred in locations where a good number of MyShake users
were located nearby; both events have maximum azimuthal gap

<60° (Fig. 8). The distance, origin time, depth, and magnitude
errors for the Borrego Spring event are 3.1 km, 0.19 s, −3:5 km,
and 0.28 (estimated−catalog), respectively. Likewise, for the
Berkeley event, they are 1.1 km, 0.47 s, −2:4 km, and 0.37,
respectively.

Figure 9 shows the results for the 3 September M 5.8 2016
Pawnee, Oklahoma, event and the 15 March M 5.6 2016 event
offshore of Morocco. Neither event has phones nearby; all
recorded waveforms are at a distance of ≥80 km from the epi-
center. The azimuthal gaps in coverage are also large at 150°
and 175°. The source parameters are therefore not as good as
the ones shown in Figure 8 but are still reasonable. The dis-
tance, origin time, depth, and magnitude errors for the
Oklahoma event are 7.6 km, 1.74 s, 5.5 km, and −0:38, respec-
tively. For the Morocco event, they are 14.7 km, −0:46 s,
1.0 km, and −0:67, respectively.

DISCUSSION

The use of smartphones as a global seismic network is still a
relatively new concept for which we have to determine what
the capabilities are, what information this network can provide
in addition to the existing more traditional seismic networks,
and what challenges the network faces. So far, the successes of
the MyShake project include rapid expansion around the globe,
rapid increases of instrumentation densification in the after-
math of societally significant earthquakes (both locally and
globally), and longevity of the user base as the network has
settled into a relatively stable number of 40,000 users. This
number is very large compared with the traditional seismic

▴ Figure 6. The distance, origin time, and depth error for the 21
events that have good azimuthal coverage and at least four phase
pickings. The mean, median, and standard deviation (st. dev.) are
also shown for all the errors. The sizes of the circles indicate how
many phase pickings were available for each event, which
ranged from 4 to 66. See the errors for all the 44 events that have
four or more phase pickings in Ⓔ Figure S1. The color version of
this figure is available only in the electronic edition.

▴ Figure 7. The magnitude estimates from MyShake compared
with those from the USGS ComCat. The mean error is 0.0, and the
st. dev. is 0.2. The color of the circle shows the number of wave-
forms used. The solid red line is the 1-to-1 line, and two black
dashed lines show an error of 1 magnitude unit. The magnitude
estimates for all the 44 events that have four or more phase pick-
ings are shown in Ⓔ Figure S2. The color version of this figure is
available only in the electronic edition.
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stations globally, but there are still many challenges to be
explored to fully understand the capabilities of this type of net-
work to achieve the routine seismological applications as illus-
trated in this study. In this discussion, we describe the

difficulties and the potential future improvements for this
global smartphone seismic network.

First, many elements of the data processing currently still
involve human interactions. In our analysis, a seismologist

▴ Figure 8. Earthquake source parameter estimation. (a) 10 June M 5.2 2016 Borrego Springs event, with maximum azimuthal gap of 56°.
(b) 4 January M 4.4 2018 Berkeley event, with maximum azimuthal gap of 17°. The magenta dots are phones that triggered during the
earthquake. The estimates MyShake epicentral location is shown as a blue star and the USGS catalog location as a red star. Errors of the
estimated source parameters with respect to the catalogs are shown in Table 3. The color version of this figure is available only in the
electronic edition.

Table 3
Catalog and Estimation Source Parameters with the Errors for the Four Different Earthquakes

Event Name
Data

Source
Origin Time

(yyyy/mm/dd hh:mm:ss.sss) Location
Depth
(km) Magnitude

Borrego Springs,
California

Catalog 2016/06/10 08:04:38.700 Latitude: 33.43; Longitude: −116.44 12.3 5.17
Estimation 2016/06/10 08:04:38.890 Latitude: 33.45; Longitude: −116.47 8.8 5.45
Error 0.19 s 3.1 km −3.5 0.28

Berkeley,
California

Catalog 2018/01/04 10:39:37.730 Latitude: 37.86; Longitude: −122.26 12.3 4.38
Estimation 2018/01/04 10:39:38.200 Latitude: 37.84; Longitude: −122.26 9.9 4.75
Error 0.47 s 1.1 km −2.4 0.37

Pawnee,
Oklahoma

Catalog 2016/09/03 12:02:44.310 Latitude: 36.43; Longitude: −96.93 5.4 5.8
Estimation 2016/09/03 12:02:46.050 Latitude: 36.47; Longitude: −97.00 10.9 5.42
Error 1.74 s 7.6 km 5.5 −0.38

Offshore Morocco Catalog 2016/03/15 04:40:40.020 Latitude: 35.76; Longitude: −3.61 10.0 5.6
Estimation 2016/03/15 04:40:39.560 Latitude: 35.63; Longitude: −3.67 11.0 4.93
Error −0.46 s 14.7 km 1.0 −0.67
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needs to review the waveforms to confirm that they are useful
earthquake records with a relatively high SNR, to remove the
waveforms with data issues (e.g., missing data, spikes), and to
manually pick the P and S-wave arrivals. To build a fully func-
tioning global seismic network, all these steps need to be auto-
mated. The very different characteristics of the network
compared with traditional networks means that a new suite
of processing software is needed.

Second, there are unique challenges to use the MyShake
data. The quality of the waveforms is different in ways that
are difficult to determine (Kong, Lv, and Allen, 2019). Two
different phones at the same location can have very different
characteristics depending on their exact physical location, and
knowing how to weight the quality of the waveforms is a chal-
lenge. There are many events for which we only detect S-wave
arrivals, that is, in the case when there are many phones but
only at larger distances (~100 km or more). Therefore, devel-
oping a robust phase picking algorithm for this noisy dataset is
important. In addition, phones may be located in different
types of buildings, on different floors, and in places where the
amplification (i.e., site response) is very different. The response
of the buildings, desks and furniture, and so on are all factors,
meaning we will require the use of many phones to aggregate

the results in an average sense. Further calibration of the ampli-
tude of MyShake recordings against the traditional seismic sta-
tions will be helpful. Although the data shown in this study
illustrated that MyShake data can be used to detect and char-
acterize earthquakes, improving the location, origin time, and
magnitude estimates will require us to better understand these
aspects of waveform data quality.

Third, the citizen science nature of the MyShake project
brings inherent challenges to seismic network operation. The
configuration and density of the smartphone network is con-
stantly changing as users join the network and leave, and indi-
vidual phones move around during the day. The detection
capability is much greater at night than during the day because
more phones are steady during the night. MyShake users will
tend to be clustered in large cities where populations are con-
centrated. Therefore, earthquakes in rural areas or far away
from population centers can be missed. When earthquakes
are detected away from population centers, the station covered
has only a narrow azimuthal coverage. This is similar to the
situation for regional seismic networks when the earthquake
is outside the seismic network. The effect is illustrated in
Figure 10, which shows the errors in location and origin time
with the azimuthal coverage and number of phases used in

▴ Figure 9. Earthquake source parameter estimation. (a) 3 September M5.8 2016 Pawnee, Oklahoma, event, with maximum azimuthal gap
of 210°. (b) 15 March M5.6 2016 Morocco event, with maximum azimuthal gap of 185°. Note that this event is beneath the Mediterranean
Sea offshore of Morocco. The magenta dots are phones that triggered during the earthquake. The estimates MyShake epicentral location
is shown as a blue star and the USGS catalog location as a red star. Errors of the estimated source parameters with respect to the
catalogs are shown in Table 3. The color version of this figure is available only in the electronic edition.
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analysis for all the events that has at least four identifiable
phases or more to conduct the calculation. When the azimu-
thal coverage is limited, there are larger errors. For this type of
earthquake, location estimation from traditional regional seis-
mic networks is also poor. One possible solution worth explor-
ing is combining information from traditional seismic stations
or complementing the network with permanent low-cost sen-
sors (Cochran et al., 2009; Clayton et al., 2012;Wu, 2015; Nof
et al., 2019).

Although the citizen science nature of this project brings
with it the limitations described previously, it also brings the
possibility of rapid network expansion because there are now
almost three billion smartphones in use in the world. To har-
ness a larger fraction of these accelerometers in the future,
MyShake has developed a completely redesigned version of the
app using a human-centered design methodology (Rochford
et al., 2018). The new app brings additional user functionality
that we hope will significantly expand the number of users pro-
viding data for more earthquakes and further study of the sci-
entific opportunities that MyShake could support.

CONCLUSION

MyShake has now been operating as a global smartphone seis-
mic network for several years. Although there is constant turn-
over in the people who are running MyShake on their phones,
the number of users at any given time has settled to about
40,000 globally. The network has recorded useful seismic wave-
forms for hundreds of earthquakes with magnitudes from <2
up to M 7.8 and from the surface to 350 km depth. The seismic
waveforms recorded by MyShake users show that the MyShake

phones could trigger on and detect M3 earthquakes out to
50 km, M5 out to 250 km, and M7 out to 500 km.

The accuracy of the location and timing information
determines the scientific uses of the data; 50% of the sampled
global dataset has timestamps with accuracies better than
0.03 s. Based on a limited test of phones inside a building, 50%
of locations are within 14 m horizontally and 4 m vertically.
This makes it possible to estimate in which building and what
floor a record is being recorded.

Applying standard regional seismic network techniques to
the MyShake data, we can determine the ability of MyShake to
characterize events. Using a set of 21 events for which there are
four ormore P- or S-wave arrivals and a maximum azimuthal gap
<180°, we find that the median location, depth, and origin time
error to be 2.7 km, 0.1 km, and 0.2 s, respectively. The mean and
standard deviation of the magnitude error are 0.0 and 0.2, respec-
tively. When earthquakes occur beneath urban regions (where
there are manyMyShake phones), the location errors are smaller.

These preliminary results suggest the potential of the
MyShake network to contribute to the seismology community
by providing additional data to detect earthquakes and con-
strain source characteristics. In particular, in locations where
there are few traditional seismic stations but dense populations,
MyShake could provide valuable data to constrain earthquake
hazards. There are many challenges and limitations to address
and overcome, but a network such as MyShake can enhance
our ability to better understand earthquakes and hazards glob-
ally, as well as to engage the public in locations where these
earthquakes occur.

DATA AND RESOURCES

The U.S. Geological Survey (USGS) Comprehensive
Earthquake Catalog (ComCat) can be accessed at https://
earthquake.usgs.gov/fdsnws/event/1. MyShake data are cur-
rently archived at Berkeley Seismology Laboratory and use
is constrained by the privacy policy of MyShake (see http://
myshake.berkeley.edu/privacy-policy/index.html). All websites
were last accessed July 2019.
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