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On the Feasibility of Using the Dense MyShake
Smartphone Array for Earthquake Location
by Asaf Inbal, Qingkai Kong, William Savran, and Richard M. Allen

ABSTRACT

MyShake is a growing smartphone-based network for seismo-
logical research applications. We study how dense array analysis
of the seismic wavefield recorded by smartphones may enhance
microearthquake monitoring in urban environments. In such
areas, the microearthquake signal-to-noise ratio on smart-
phones is not well constrained. We address this issue by
compiling a seismic noise model for the Los Angeles (LA)
metropolitan area using over 500,000 seismograms recorded
by stationary phones running MyShake. We confirm that
smartphone noise level is reduced during nighttime, and iden-
tify strong noise sources such as major traffic highways, the LA
airport, and the Long Beach seaport. The noise analysis shows
that stationary smartphones are sensitive to human-induced
ground motions, and therefore smartphone-derived seismo-
grams may be used to infer the elastic properties of the shallow
subsurface. We employ array backprojection analysis on syn-
thetic data to estimate what fraction of LA’s smartphone user
population is required to install MyShake to enable the loca-
tion of events whose induced ground motions are below the
smartphone noise level. We find that having 0.5% of LA’s pop-
ulation download the MyShake app would be sufficient to
accurately locate M > 1 events recorded during nighttime
by stationary phones located at epicentral distances < 5 km.
Currently, the MyShake user coverage in LA is approaching
a value that will allow us to locate events whose magnitude
is near the regional catalog’s magnitude of completeness.

Supplemental Content: Description of numerical simulations.

INTRODUCTION

The earthquake catalog is the most important data product
provided by a seismic monitoring system. The quality of the
earthquake catalog can be estimated from its magnitude of
completeness M cut defined as the magnitude cutoff above
which all events recorded by the network are registered in the
catalog. It is well established that earthquake-size population
follows a power-law distribution, according to which earth-
quake counts increase by a tenfold for each unit drop in mag-
nitude. Hence, reducing the magnitude of completeness by 1

magnitude unit is expected to yield a tenfold reduction in the
time interval required for effective seismic monitoring.

Two factors determine the seismic network’s monitoring
capabilities: station density and ambient noise levels. In
southern California, the highest station density is found within
the Los Angeles (LA) metropolitan area. Anthropogenic activ-
ity in that area generates signals that may mask arrivals from
local M < 2 earthquakes. As a result, M cut in the LA basin is
∼2:2, one unit larger thanM cut of less well-instrumented faults
in rural areas surrounding LA (Hutton et al., 2010).

Array processing may be used to enhance detection and
improve hypocentral location accuracy from measurements
of slowness associated with energy impinging on the array
(Rost and Thomas, 2002; Meng and Ben-Zion, 2018). If a
detailed velocity model is available, time reversal may be used
to focus the energy onto the source (Larmat et al., 2009;
Chambers et al., 2014; Inbal et al., 2015, 2016; Nakata and
Beroza, 2016), thus facilitating hypocenter determination in
noisy environments. In the source imaging procedure, the array
effectively filters low-incident incoming surface waves gener-
ated primarily by shallow noise sources, which leads to an
improvement in the signal-to-noise ratio (SNR; Inbal et al.,
2015). However, obtaining high-resolution images of micro-
earthquake sources requires that the wavefield at the 1–10 Hz
frequency band be well resolved, and thus should be sampled at
interstation distances smaller than a few hundred meters. To
date, near-fault dense array data at this resolution are very
scarce.

The MyShake application developed at University of
California (UC) Berkeley, utilizes the principle of crowdsourc-
ing to record vast amounts of seismic waveform data from
private smartphones running the application, effectively trans-
forming them into a seismic monitoring system (Kong, Allen,
Schreier, and Kwon, 2016; Kong, Allen, and Schreier, 2016).
Since it was launched in 2016, more than 296,000 people
installed MyShake on their smartphones, with 40,000 actually
running the application, and about 6000 users who contribute
waveform data to our database on a daily basis.

A single smartphone will classify a signal as a likely earth-
quake signal when the following three conditions are met:
(1) the smartphone has been stationary for at least 30 min;
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(2) the ratio between the short-time average
(STA) to the long-time average (LTA) ampli-
tudes of one of the channels exceeds some pre-
defined threshold coded into the application;
and (3) an artificial neural network (ANN)
detection algorithm installed on the smart-
phone determines the signal has earthquake
characteristics (for more details on the detection
procedure, see Kong, Allen, Schreier, and
Kwon, 2016; Kong, Allen, and Schreier, 2016).
Any smartphone with a working application
will also broadcast state-of-health messages
every two hours. It is quite common that a
smartphone will not issue a triggering message
when an earthquake occurs nearby because con-
dition 1 is not met. We find that, on average,
the ANN will label an incoming signal as a tec-
tonic event for about 20% of the signals that
pass the STA/LTA criteria. Once condition 3 is met, a smart-
phone will transmit a 5 min window containing three-compo-
nent ground acceleration sampled at 25 samples per second
starting 1 min prior to the trigger time. These accelerations
are subsequently archived in our database.

The system was originally designed to detect moderate to
large (Mw > 5) earthquakes and sends early warning alerts
based on smartphone-derived triggers. Version 2.0 of the appli-
cation, released in March 2018, also enables remote initiation
of continuous recording on selected groups of smartphones
connected to an external power source for periods of up to
about 30 min. In light of this development, our objective here
is to assess the potential of the MyShake array for microearth-
quake monitoring, especially in sparsely monitored urban areas.
Earthquake monitoring can be roughly divided into two tasks,
the first is the earthquake detection and the second is the deter-
mination of the hypocentral parameters and magnitude. We
examine the usage of a dense smartphone array for continuous
monitoring of seismic activity via a source imaging approach.
We focus on hypocentral determination using primarily S-
wave energy assuming the signal has been positively identified,
and estimate how well earthquakes recorded by a large number
(> 100) of phones can be located.

SINGLE-PHONE TRIGGERING PROBABILITIES

We adopt an empirical approach for estimating the detection
probability of a single smartphone. For this purpose, we query
the MyShake archive for active phones around the time of
M > 2 events in California. We define a spatial window that
ranges out to 100 km away from the epicenter, and a temporal
window that includes the propagation time to the furthest
smartphones. Active phones within this spatiotemporal win-
dow are divided into one of these three groups: nonstationary,
stationary (and therefore ready to trigger), and triggered on
earthquake. The groups are then binned in concentric areas
with increasing size focused around the epicenter. For each
magnitude bin, we compute the detection probabilities from

the ratio between the detection counts to the count of available
phones in each distance bin during the expected arrival time of
P- or S waves. We do not discriminate between phones trig-
gered by P- or S-wave arrivals since the most of the phones
recording M < 3 events were likely triggered by the S wave.

The results are presented in Figure 1, which shows the
detection probabilities as a function of magnitude and epicen-
tral distance. We first examine the detection probability of the
entire user population including nonstationary and stationary
phones. The number of nonstationary smartphones is much
larger than stationary ones and nonstationary smartphones
cannot issue triggering messages. As a result, the detection
probabilities for the entire population are generally below
40% (Fig. 1a). For practical purposes, the measure of detections
only on stationary phones is more important for estimating the
monitoring capabilities of the MyShake array. This metric is
shown in Figure 1b. The results suggest that stationary phones
are generally effective for monitoring ofM > 3 events at short-
epicentral distance. A stationary phone is likely (probability
> 90%) to detect M ≈ 3 events occurring at a distance of
< 10 km, and 4 < M < 5 events as far as 100 km from the
epicenter. However, the estimate for M > 4 events relies on a
small number of detection data and therefore exhibits larger
scatter relative to smaller magnitude bins.

The results suggest that S waves due to events withM < 2
are not likely to trigger individual smartphones running the
MyShake app, even at short-epicentral distances (probability
< 20%). Indeed, the signal from small magnitude events is well
below the average noise level of most smartphones (Kong,
Allen, Schreier, and Kwon, 2016). This is the result of factors
that reduce the SNR on the smartphones: high-noise floor of
microelectromechanical sensors (−55 dB in the 1–10 Hz band
vs. −120 dB for traditional seismometers), high level of
motion induced by cultural activity in the vicinity of the smart-
phones, poor coupling between the smartphones and the
underlying strata, and limited dynamic range due to the 16-bit
digitizer used in the smartphone. In addition, the ANN
algorithm designed to discriminate between tectonic and
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▴ Figure 1. Detection probability as a function of magnitude and epicentral dis-
tance. Circles, squares, triangles, and diamonds are for users located less than 10,
10–20, 20–50, and 50–100 km away from the epicenter, respectively. (a) Stationary
and nonstationary smartphones. (b) Stationary smartphones. Dashed curves are
polynomial fit to the data. The color version of this figure is available only in
the electronic edition.
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nontectonic signals was trained on a dataset of strong-motion
seismograms due to events with M > 4:5; and hence, it is
biased toward detection of moderate to large magnitude events.

Next, we examine how earthquake location might be
improved using dense array analysis. First, we derive a smart-
phone-based noise model for the LA metropolitan area. We
then compare this model to recorded amplitudes of small
earthquakes (M < 3:5) to establish a frequency band that
enhances the smartphone’s SNR for array processing purposes.

SMARTPHONE-BASED NOISE MODEL FOR THE
LA METROPOLITAN AREA

The LA basin contains over 5000 registered MyShake users.
Assuming the percentage of smartphone users in LA is similar
to the percentage of users in North America, MyShake users
constitute about 0.1% of smartphone users in LA (see Data and
Resources). Between 2016 and 2017, MyShake users in the LA

basin contributed approximately 500,000 5 min, three-
component waveform data segments, which we use to derive a
noise model. Noise is defined here as coherent or incoherent
ground motion induced by a nontectonic source. We bin the
users in 4 km2 cells, extract a 1 min pre-trigger window from
each seismogram and take its fast Fourier transform (FFT). We
separate between waveform data acquired during day- (6 a.m.–
8 p.m.) and nighttime (8 p.m.–6 a.m.) hours, and stack the
spectral amplitudes in each cell during these time windows.

Figure 2 presents the user density distribution, and the
averaged 3.2–6.4 Hz horizontal ground-motion amplitudes.
This range of frequencies is selected based on analysis of
the smartphones’ SNR (Fig. 3). As a result of increased human
activity, the triggered waveform data counts peak during morn-
ing hours (Fig. 2a). This indicates that the MyShake detection
algorithm tends to mislabel human-induced signals as earth-
quake signals during these times. Anthropogenic activity also
induces ground motions whose daytime amplitudes are on
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▴ Figure 2. Noise model for the Los Angeles (LA) basin. (a) Distribution of 5 min waveform recorded between 2016 and 2017 totaling
500,000 seismograms. (Inset) Trigger counts as a function of hour of day are shown. (b–d) 3.2–6.4 Hz noise amplitudes within the LA basin.
(b) Ratio between day- and nighttime amplitudes, (c) nighttime amplitude, and (d) daytime amplitudes. Gray curves are for highways with
large traffic volumes, with the highway number denoted in black. LAX, Los Angeles International Airport; LBP, Long Beach port; HBO,
Huntington Beach Oilfield. The color version of this figure is available only in the electronic edition.
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average a factor of 1.6 higher than nighttime
amplitudes. However, in some areas associated
with major traffic highways, daytime ground-
motion amplitude is much larger than 1:6×
nighttime amplitude. For example, daytime
horizontal ground-motion amplitudes along
Interstate I-5 and Interstate I-405, near the LA
international airport, and near the Long Beach
seaport are three to four times higher than
nighttime amplitudes. Some areas are character-
ized by relatively high-noise levels that are per-
sistent throughout day- and nighttime. For
example, the portion of Interstate I-405 run-
ning along Huntington Beach and Long
Beach is also very noisy during nighttime. It
is possible that regular activity (i.e., not confined
to daytime hours) in oilfields lying along that
portion of the highway increases the ambient
noise levels on the smartphones.

To estimate the SNR for M < 4 earth-
quakes in the LA basin, we use ground motions
recorded by the Southern California Seismic
Network (SCSN) from 3684 events that
occurred within between 2008 and 2018. For
each seismogram, we take the FFT of a 1.5 s
time window centered on the (manually picked)
S-wave arrival time and bin the spectra in con-
centric regions around the epicenter. We then
stack the spectra of the channel containing peak
ground motion in 0.5 magnitude bins. Figure 3
presents the averaged horizontal acceleration
and velocity spectra within epicentral of up to
15 km away from 0:5 < M < 4 events, and the
average nighttime noise levels, computed using
the results presented in Figure 2c. To estimate
the expected improvement in SNR introduced
using a dense array, we assume the noise
between the array’s elements is uncorrelated,
and scale the noise curves by a factor equal to
the square root of the number of channels in the
array (Rost and Thomas, 2002). We find that
the signal due to a 1:5 < M < 2:0 recorded by
a 100-smartphone array located at < 5 km from the epicenter
exceeds the ambient nighttime noise level.

The integration of the acceleration data to velocity brings
about an increase of the high-frequency fall-off rate. This trend
is observed for both the seismic source spectra and the smart-
phone noise spectra; however, the SNR in velocity space is
larger than in acceleration space. This is because the seismic
source acceleration spectra are flat above the corner frequency,
whereas the smartphone acceleration noise spectra decay with
increasing frequency (Fig. 3a). In velocity space, the target fre-
quency band (1–10 Hz) is above the corner frequency of the
smartphone noise but below the corner frequency of earth-
quakes with M < 2 (Fig. 3b). Thus, integrating the accelera-
tions prior to performing array backprojection analysis is

expected to enhance microearthquake detectability. The hori-
zontal velocity and acceleration ground-motion amplitude due
to anM ≈ 3 event recorded by a single smartphone located less
than 5 km away from the epicenter is expected to exceed the
smartphone’s > 3 Hz noise level by roughly a factor of 3.
Earthquakes with M < 2:5 will generally not be detected by
a single smartphone even at short-epicentral distances (see
the Single-Phone Triggering Probabilities section).

However, the distribution of smartphone users in urban
areas offers the opportunity to sample the seismic wavefield
at unparalleled density, thus potentially enhancing the detec-
tion capabilities. Our investigation of SNR within LA suggests
that increasing the density and analyzing > 3 Hz velocity data
may improve the ability to locate M ≈ 2 earthquakes. Yet, it is
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▴ Figure 3. Earthquake and smartphone spectra of (a,c) horizontal acceleration
and (b,d) velocity. Solid curves are averaged earthquake S-wave spectra recorded
at epicentral distances smaller than (a,b) 5 km and (c,d) between 5 and 15 km. Light
thick gray dashed curve is for the average smartphone noise amplitude. Dark gray
and black thick dashed curves are for theoretical noise amplitudes within arrays
containing 100 and 1000 smartphones, respectively. Dashed–dotted curve in (b,d) is
fit to the single-smartphone noise spectra. Dashed thick curves in (b,d) is for the
spectra of a synthetic source with Mw 2.0. The color version of this figure is avail-
able only in the electronic edition.
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not clear what density of users is required for locating an event
which induces ground motions whose amplitude is below the
smartphone’s noise level. Because dense smartphone array data
for small magnitude (M ≈ 2) are not yet available, in the next
section, we attempt to address this issue using synthetic tests
incorporating the smartphone-derived noise model.

ARRAY PROCESSING SCHEME

We explore the possibility of locating sources in backprojection
images constructed from stacked envelopes, using an approach
that is similar to the one used by Inbal et al. (2015, 2016). Our
objective is to accurately determine the location of M < 2
earthquakes, and we therefore focus on S-wave energy whose
SNR is generally larger than P-wave energy. The ground veloc-
ity envelope s�t� is computed by filtering the traces between 3.2
and 6.4 Hz using a fourth-order Butterworth filter, tapering
the analyzed window, squaring, and smoothing using a 8-point
(0.32 s) running mean window. The envelope stack computed
for an array consisting of n elements is defined here as

EQ-TARGET;temp:intralink-;df1;52;505Sj�t� �
Xn

i�1

SNE�t � τij�; �1�

in which τij is the S-wave travel time between a source at grid-
point j and a sensor at location i, and the subscript NE denotes
the sum of the north–south and east–west enveloped seismo-
grams. The location is determined by scanning over a range of
possible sources beneath the array. The grid of potential sources
is discretized at 250 m in the horizontal and vertical dimen-
sions. In practice, for each time window we compute S�t� for
each grid point, select the maxima of each stack, and assign the
source location to the grid point with the maxima of the
ensemble of stack maximum. For a set of l grid points spanning
the possible source locations, and a backprojection time win-
dow containing m samples, the selected source location is

EQ-TARGET;temp:intralink-;df2;52;310Ss�t� � max
j∈�l �

�max
k∈�m�

�Sjk��: �2�

In this study, we use synthetic smartphone data to explore
what phone densities are needed to locate events. In addition,
our scheme assumes that the smartphone clock does not suffer
from instrumental drifts reducing timing accuracy. The
MyShake app updates the smartphone clock every hour by
communicating with a server hosting a network time protocol.
Our tests show that this results in absolute timing errors (at the
end of the hour) that may be as large as 2 s, a magnitude that
will prohibit array-based processing. Thus, the smartphone’s
clock will need to be calibrated at a higher rate to allow array
processing.

To estimate timing errors for continuously recording col-
located phones, we conducted a series of tap tests, in which a
group of phones were placed on a table and recorded a single
source produced by tapping on the table. We find that the

relative timing error between these phones is of the order
of one sample (0.04 s). To estimate the effect of this timing
error on the backprojection-derived locations, we use a local
1D velocity model for the LA basin (Shaw et al., 2015),
and compute the arrival-time differences at a 1000-element
array with a 10 km aperture for sources at various depths. We
assume that the epicentral distance is smaller than the array’s
aperture. If the source depth is larger than about twice the
array’s aperture, it will exert a larger influence on the mean
travel-time differences than the source’s horizontal location.
To resolve the location using backprojection, the travel-time
differences between the array’s elements must be smaller than
the phone’s timing error. For example, 56% and 25% of the
travel-time differences are larger than three samples for sources
at depths of 5 and 10 km, respectively. From the distributions
of travel-time differences, we find that relative timing errors of
the order of 0.04 s will increase locations’ uncertainties by
roughly 3 and 1 km in the vertical and horizontal directions
for sources located at a depth of 5 km, and by roughly 4 and
2 km in the vertical and horizontal directions for sources
located at a depth of 10 km.

SYNTHETIC TESTS

We carry out a series of synthetic tests whose objective is to
evaluate the performance of the array processing scheme. For
this purpose, we simulated broadband (up to 30 Hz) ground
motions due to a point source embedded in an elastic homo-
geneous half-space (see the Ⓔ supplemental content), neglect-
ing inelastic attenuation. At the short epicentral distances
considered here, our simulations give rise to direct P- and
S-wave amplitudes that nicely match the observations. This
is illustrated in Figure 3b,d, which shows the match between
the azimuthally averaged S-wave synthetic spectra generated
from a simulation of Mw 2.0, and the mean raw spectra.
The effects of inelastic attenuation become more severe at epi-
central distances larger than about 10 km, in which the syn-
thetic spectral amplitude at ∼9 Hz is roughly twice as large
as the observations (Fig. 3d). We therefore confine the maxi-
mum epicentral distance in the synthetic tests to be 5 km. The
volume onto which data are backprojected measures 10 km in
the vertical and horizontal dimensions, and 10 and 5 km in the
vertical and horizontal dimensions for tests conducted with
100- and 1000-smartphone arrays, respectively. We focus on
S-wave energy recorded on the horizontal channels. For the
short epicentral distances sampled here, the time window
we backproject may contain both P- and S-wave energy, but
we consider the effects of P-wave energy on the backprojection
images negligible. This is a valid assumption given that P-wave
amplitudes in the horizontal channels are small compared to
S-wave amplitude. In addition, backprojection is done using
S-wave velocity model, so that P-wave energy is not expected
to stack as coherently as S-wave energy.

We simulate noise whose attributes match the LA smart-
phone velocity noise model (Fig. 3b), by generating colored
noise whose amplitude as a function of frequency is
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EQ-TARGET;temp:intralink-;df3;40;745A�f � � αf −β; �3�

in which α and β are coefficients whose value is
equal to 0.2 and 1.5, respectively (dashed–dot-
ted curve in Fig. 3b,d). We conduct 100 tests
for each input magnitude using arrays consist-
ing of 100 and 1000 sensors uniformly distrib-
uted around the epicenter. The noise is assumed
to be (1) uncorrelated between smartphones
and (2) uncorrelated between channels. The
former assumption is reasonable given the aver-
age spacing between sensors. To verify that
noise between horizontal channels is uncorre-
lated we cross correlated the pre-trigger, collo-
cated horizontal accelerations used to construct
the noise model (see the Smartphone-
Based Noise Model for the LA Metropolitan
Area section). The mean of the maximum
cross-correlation values is 0.06, which validates
our assumption.

The results of the synthetic tests are pre-
sented in Figure 4. The distribution of phones
in one of the synthetic tests containing 100
receivers is shown in Figure 4a. The synthetic
seismograms consist of both horizontal chan-
nels with simulated colored noise (an example
trace shown by the thin line in Fig. 4b).
Figure 4c,d presents the images constructed by
backprojecting a 6 s window containing both P
and S waves due to an Mw 1.03 using a 100-
smartphone array. An example of a stack of
envelopes in which P-wave amplitudes are neg-
ligible relative to S-wave amplitudes is shown in
Figure 4b.

The images formed from synthetic data
focus around the horizontal input source loca-
tion, with some smearing occurring primarily
along the depth axis. This is a common artifact
of the backprojection method we apply and is
the result of the limited aperture of the array
and noise present in the data. The location
error, defined as the difference between the
input location and the maxima of the backpro-
jection image, is about 250 m in the horizontal
and vertical directions. This level of accuracy
may be improved by backprojecting higher fre-
quency energy onto a finer grid.

If the velocity model is perfectly known,
using only a small number of smartphones
located at an epicentral distance < 5 km will
allow us to accurately determine the location
of earthquakes whose magnitude is below M cut of the LA
basin. If the phones’ timing errors are of the order of one sam-
ple (0.04 s), then location uncertainties are expected to be less
than 5 km. This range is comparable to the absolute source
location uncertainties that result from traditional network-

wide location approach (for a network whose average station
spacing is about 5 km). We further evaluate the effect of abso-
lute timing errors on the backprojection-derived locations by
randomly shifting the input waveforms using time delays that
are normally distributed with standard deviation equal to two
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▴ Figure 4. Synthetic source imaging of anMw 1.03 and location errors as a func-
tion of magnitude. (a) Distribution of receivers for one test including 100 smart-
phones uniformly distributed around a synthetic source. (b) Normalized
amplitude as a function of time. Thin line is for velocities filtered between 3.2
and 6.4 Hz at a site nearest to the epicenter (triangle in a). Bold curve is for
the amplitude of the stack at the grid point corresponding to the maxima of
the backprojection shown in (c) and (d). Gray rectangle denotes the S-wavetrain.
(c) Backprojected maximal stack amplitude as a function of horizontal location at
5 km depth. (d) Backprojected maximal stack amplitude as a function of depth.
Cross section is along x � 0. Black cross is for the input source location.
Amplitudes are normalized by the maxima of the backprojection volume. (e,f)
Location errors as a function of magnitude for synthetic tests employing (e) 100
and (f) 1000 sensors. Values shown are median differences between the input and
output location (defined as the maxima in the backprojection image) from 100 syn-
thetic tests. Circles and squares indicate the error in the horizontal and vertical
directions, respectively. Horizontal and vertical location error for input data con-
taining only colored noise are shown with the dashed and dashed–dotted curves,
respectively. Solid lines are for signal-to-noise ratio (SNR) of the stack at the grid
point corresponding to the synthetic source location (indicated by the bold curve in
at the bottom of b). The color version of this figure is available only in the electronic
edition.
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samples (0.08 s, a factor of 2 larger than the absolute timing
error we estimated from the tap test presented in the Array
Processing Scheme section). We find that this timing error
magnitude tends to reduce the resolution on the hypocenter’s
location (i.e., increases smearing) but does not affect the loca-
tion of the images’ maxima.

Figure 4e,f presents the median horizontal and vertical
location errors as a function of magnitude from 100 synthetic
tests using 100 and 1000 phones, respectively. The medians are
computed after discarding output locations at the boundary of
the grid. The expected location error for data containing only
noise is shown by the dashed curves in Figure 4e,f. The hori-
zontal location error of the noise-only dataset for 1000-smart-
phone arrays is smaller than that of the 100-smartphone array
(dashed blue curve in Fig. 4e,f ), which is the result of the
smaller horizontal dimension of grid used for backprojecting
the 1000-smartphone array data.

Using 100 stationary smartphones distributed within a
radius of 5 km away from the epicenter (i.e., densities of
1:27 users=km2) allow us to determine the location of Mw ≈
1:0 events occurring at depths < 10 km. The location uncer-
tainties derived from 100 simulations correspond to < 2 and
< 4 km in the horizontal and vertical directions (filled squares
and open circles in Fig. 4e), respectively. Increasing the user
density by a factor of 10 allows us to accurately determine
the location of events as small as Mw ≈ 0:8. However, smaller
magnitude events are not likely to exceed the array’s noise level
even for configurations containing 1000 smartphones. The
smartphones acceleration data are stored in half-precision for-
mat, which further results in poor resolution on very weak
accelerations.

Figure 4e,f shows the SNR of the stacked waveforms,
defined here as the ratio between the median amplitude in
a 0.5 s window containing the S-wavetrain (denoted by the
gray rectangle in Fig. 4b) to the median amplitude in a 0.5
window containing simulated noise outside the S-wave win-
dow. The SNR is important for developing a continuous earth-
quake detection strategy. We find that events that were well
located using a 1000-smartphone array (Fig. 4f ) correspond
to stack with SNR ≈ 1:1. This suggests that an STA/LTA
event detector applied to the stacked waveform data might miss
events with Mw < 1:0 recorded by very dense arrays. The
SNR’s dependency on magnitude is similar for arrays of
100 and 1000 smartphones. However, increasing the array’s
density enhances focusing and results in sharper backprojection
images. Thus, one possible detection approach is to rely on the
statistical properties of the images rather than on the raw wave-
forms or the SNR of Ss�t� (the grid point assumed to contain
the source). Developing a robust array-based classification
scheme will be part of our future work.

The average population density in the LA metropolitan
area is 2300 people=km2, roughly 60% of which use smart-
phones on a regular basis (see Data and Resources). Our
records indicate that >60% of the active phones are also sta-
tionary for intervals longer than 30 min (Kong et al., 2018).
Thus, a fraction as small as 0.5% of the population is required

to install MyShake for us to be able to locate M ≈ 1 occurring
beneath the city during nighttime. We note that approximately
0.1% of smartphone users have already downloaded the
MyShake app (although not all of the users continue to run
the app). In real-life applications, we expect the monitoring
system to continuously backproject data recorded by the array
and scan the stacked data for earthquake signals.

DISCUSSION

Our analysis of smartphone earthquake triggers suggests that
M > 3 are likely to be detected by a stationary smartphone
located at epicentral distances smaller than 10 km, and that
M > 4 events may be detected by a stationary smartphone
located several tens of kilometers from the epicenter (Fig. 1).
Under favourable SNR conditions, events with magnitude as
small as M � 2:5 may be recorded by a nearby smartphone
(Kong, Allen, and Schreier, 2016). The current single-phone
detection capabilities rely on an ANN that was designed to
detect seismic arrivals due to events with M > 4:5. However,
the detection statistics may improve once the ANN algorithm
is trained on the entire MyShake waveform database (since
2016), so as to enhance the detectability of events with
M < 3. We expect that this will improve MyShake’s detection
capability to a level comparable with performance of local net-
works in seismically active, sparsely instrumented areas such as
Nepal (Pandey et al., 1999). Smartphone data provided by the
large number of users in the metropolitan areas residing within
these regions may be used for characterizing active faults, thus
contributing to seismic hazard mitigation.

We derive a smartphone-based noise model for the LA
metropolitan area, which allows us to assess the performance
of the MyShake smartphone array operating there. The 1–
10 Hz smartphone-recorded noise level is dependent on the
time of day and the location within the city, a pattern that is
frequently observed in urban environments (e.g., Bonnefoy-
Claudet et al., 2006; Groos and Ritter, 2009). Previous studies
analyzed the SNR on low-cost sensors (Evans et al., 2014;
Kong, Allen, and Schreier, 2016), derived the likelihood of
detecting events as a function of their magnitude in a manner
similar to the one presented here (Clinton and Heaton, 2002),
and described and evaluated the performance of a low-cost sen-
sor network for monitoring strong earthquake motions (e.g.,
Lawrence et al., 2014; Clayton et al., 2015). Our analysis of
the SNR on low-cost sensors installed in smartphones differs
from the SNR analysis presented in these studies mainly
because the MyShake user density allows us to estimate noise
amplitudes across our study area at a finer resolution than has
been obtained thus far. In addition, whereas previous studies
attempted to assess whether data from low-cost sensors may be
used for providing earthquake early warning alerts, here we
focus on the earthquake monitoring capabilities of the
MyShake array. Using array-based techniques for earthquake
location purposes is more computationally challenging than
relaying on phase picks within a network. However, array
analysis may enhance monitoring of small earthquakes, even
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in situations when the SNR < 1, as is frequently the case for
M < 2 recorded on smartphones. Our estimates may be used
for future installments of urban dense seismic networks, and
for analyzing the recording capacity of the permanent network
deployed in the LA basin. The SCSN coverage is densest in the
LA metropolitan area, and yet its magnitude of completeness
there is about one unit larger than within rural regions in
southern California. The detection capabilities may be signifi-
cantly improved if dense array data are available (Inbal et al.,
2015, 2016). Assessing the advantages from future dense
deployments requires that the SNR is well constrained in space
and time. Currently, the microearthquake signal amplitude
within the LA basin is well constrained (Fig. 3), but the noise
level is not. The noise maps presented in this study may be used
for estimating the density of low-cost sensors that are needed to
be deployed to meet a predefined earthquake detection criteria.

We find that some areas in the LA basin exhibiting high-
noise levels are correlated with known sources of noise (high-
ways, airport, seaport), whereas other areas exhibit high-noise
levels during day- and nighttime. The correlation with known
sources of noise along the Huntington oilfield is marginal.
However, it is possible that at least part of the 1–10 Hz seismic
motions recorded by smartphones in that area is the result of
ongoing injection in adjacent oilfields. That smartphones are
not insensitive to human-induced seismic ground motion sug-
gests that, similar to studies using high-quality seismic data, the
ambient 1–10 Hz noise field recorded on a smartphone array
may be used to image shallow subsurface heterogeneities
(Bowden et al., 2015; Hillers et al., 2016) or recover the shal-
low inelastic attenuation profile (Fuchs and Bokelmann, 2018;
Inbal et al., 2018; Li et al., 2018).

Results from synthetic tests suggest that locating micro-
earthquakes with the dense MyShake smartphone array is fea-
sible. This suggests that smartphone data may be used in
conjunction with data from high-quality sensors to improve
the detection of small earthquakes in poorly instrumented
cities such as Kathmandu. Data from a 100-smartphone array
with a 10 km aperture allow us to recover the location ofM ≈
1:0 synthetic sources (if they occur beneath the array during
nighttime). Increasing the array’s density by a factor of 10
allows us to recover the location of events as small asM ≈ 0:8.
Our method focuses energy envelopes onto the source and is
hence relatively robust against small errors in the velocity
model (Beskardes et al., 2018). However, scattering from
small-scale heterogeneities or at layer interfaces may introduce
artifacts to backprojection images. This phenomenon has been
reported for arrays located at teleseismic distances (Yue et al.,
2017) but has not been considered in this study. For the range
of magnitude and epicentral distance considered here, it is
unlikely that the coherent stack of any scattered phase will have
an amplitude larger than the stack of the direct S-wave phase,
given that both the scattered and direct phases are included in
the same analyzed time window. The effect of scattering in that
case might be to produce secondary focal spots in the image,
thus increasing its ambiguity.

We are currently analyzing 3.2–6.4 Hz energy, a range
that is selected based on our SNR analysis (Fig. 3b) and are
limited by the Nyquist frequency of our data (12.5 Hz).
Increasing the sampling rate on the smartphones will allow
us to examine even higher frequencies, but will result in very
large data volumes further complicating the backprojection
analysis presented here. In addition, increasing the sampling
rate tends to increase the smartphone’s temperature, which
might limit our recording capacity. At the range of source–
receiver distances considered here, refining the grid of potential
sources below 250 m dramatically increases the computational
cost. Certain optimization techniques and usage of graphical
processing units may reduce the cost of carrying the backpro-
jection analysis at a finer level of discretization.

Version 2.0 of the MyShake app allows us to record con-
tinuously on selected phones plugged into power. The availabil-
ity of continuous data provided by our users will allow us to
test the ideas presented in this article. In particular, continuous
backprojection of data from over 5000 registered users in the
LA area will allow us to identify sources of permanent noise to
estimate the level of coherency within the array, and to test
whether earthquakes with M < M cut may be located using
the MyShake smartphone data.

CONCLUSIONS

We use data from active phones located aroundM > 2 events
in California to assess the on-phone detection capabilities. We
find that there is about 90% probability of detecting anM ≈ 3
event on a stationary smartphone located <10 from the
epicenter, or of detecting a moderate event (4 < M < 5) by
a smartphone located < 100 km from the epicenter.

We derive a smartphone-based noise model for the LA
metropolitan area. Noise amplitudes show some degree of cor-
relation with known anthropogenic noise sources such as major
highways, the LA international airport, and the Long Beach
seaport.

We estimate the amplitude of M < 3:5 earthquakes
occurring within the LA area. The level of the signal and the
empirical noise model we derive are used to estimate the smart-
phone density required to locate M < 1:5 earthquakes occur-
ring within the LA basin using array backprojection
techniques.

We find that densities of 1:27 users=km2 uniformly dis-
tributed within 5 km from an M ≈ 1:0 synthetic source are
required to accurately recover the input source location.

Given the density of smartphone users in LA, a fraction as
small as 0.5% of the population is required to install MyShake
to enable backprojection derived locations of earthquakes
whose magnitude is below the SCSN catalog magnitude of
completeness in LA.

We are currently collecting continuous smartphone data
that will be used to better characterize sources of high-
frequency noise and to compile a smartphone-based earth-
quake catalog for the LA basin.
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DATA AND RESOURCES

Data recorded by MyShake are currently archived at Berkeley
Seismological Laboratory and are constrained by the privacy
policy of MyShake (see http://myshake.berkeley.edu/privacy‑
policy/index.html, last accessed June 2018). For information
about access to the data for research purposes, contact
rallen@berkeley.edu. Seismic data used in this study were
recorded and maintained by the Southern California Seismic
Network (SCSN; doi: 10.7914/SN/CI). North America smart-
phone users statistics are based on the Ericsson Mobility
Report at https://www.ericsson.com/en/mobility-report (last
accessed June 2018).
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