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ABSTRACT

This article gives an overview of machine learning (ML)
applications in MyShake—a crowdsourcing global smartphone
seismic network. Algorithms from classification, regression,
and clustering are used in the MyShake system to address vari-
ous problems, such as artificial neural network (ANN) and
convolutional neural network (CNN) to distinguish earth-
quake motions, spatial–temporal clustering using density-based
spatial clustering of applications with noise (DBSCAN) to
detect earthquakes from phone aggregated information, and
random forest regression to learn from existing physics-based
relationships. Beyond existing efforts, this article also presents a
vision of the role of ML in some new directions and challenges.
Using MyShake as an example, this article demonstrates the
promising combination of ML and seismology.

INTRODUCTION

MyShake is a new global smartphone-based seismic network that
relies on crowdsourcing (Kong, Allen, Schreier, et al., 2016).
Since its public release in 2016, MyShake has covered six con-
tinents with about 296,000 downloads globally. Currently,
40,000 active phones carry the MyShake app, with about 6000
devices contributing data to our server on a daily basis. Data
collected by these smartphones enabled new applications. For
example, Kong, Allen, and Schreier (2016) observed that P-wave
amplitudes exceed the noise level on phones located as far as
100 km from the epicenter of M 5.2 earthquakes, and that the
amplitudes of seismic signals recorded on smartphones are sim-
ilar to those recorded by high-quality seismometers. Therefore,
earthquake parameters (magnitude, location, and origin time)
could be estimated from the MyShake waveforms with reason-
able accuracy (Q. Kong et al., unpublished manuscript, see Data
and Resources). A. Inbal et al. (unpublished manuscript, see Data
and Resources) show that the spatial distribution of smartphone
noise amplitude within the Los Angeles basin is correlated with
anthropogenic sources such as major traffic highways, the airport,
and the Long Beach seaport. The dense spatiotemporal coverage
of the MyShake array paves the road for new applications such as
building health monitoring and earthquake detection via array
backprojection (Kong, Allen, et al., 2018; A. Inbal et al., unpub-
lished manuscript, see Data and Resources).

Harvesting and analyzing seismic data from phones
require complex tasks that could benefit frommachine learning

(ML). The first part of this article presents an overview of
various ML-based applications implemented within the
MyShake network. In the second part, we discuss various prob-
lems related to crowdsourcing of noisy seismic data, and
present potential ML-based approaches for addressing them.

CURRENT APPLICATIONS

We start by briefly describing MyShake: A system designed to
detect earthquakes in near-real time using sensors built into
smartphones. In the current implementation, each phone re-
ports the detection of earthquake-like motion to the cloud server
with a short-trigger message including timestamp, location,
and amplitude. Earthquake parameters are automatically deter-
mined based on in-cloud aggregation of many earthquake trig-
gers. Ground motions recorded around the trigger time are also
stored in the database for further analysis. The system architec-
ture is described in Kong et al. (2015). Four existing ML algo-
rithms are running in the MyShake system shown in Figure 1,
which are summarized in the following two subsections.

Real-Time Analysis on Phone and Cloud (ANN,
DBSCAN, and Random Forest)
Ground motion exceeding the phone noise level can be excited
by a natural or anthropogenic source. To distinguish earthquake-
like motion from daily human activities on a single phone,
we formulate this problem as a binary classification problem.
Both human activity data (from volunteers) and earthquake data
(shake table and simulation data) were collected to form the
training datasets. Different frequency domain, time domain, and
statistical features were extracted from 2 s window three-com-
ponent waveforms to capture the difference between those mo-
tions. To reduce the chance of overfitting and computation cost,
only three best features were selected from 18 different features
using a greedy forward feature selection method (Kuhn and
Johnson, 2013). Besides classification accuracy, ease of imple-
mentation and computational cost are also considered as the
feature selection criteria, due to the limited resources on phones.
To reduce class bias, we used the K-means clustering algorithm
(Hartigan and Wong, 1979) to downsample the majority class.
We tested differentML algorithms and found that with carefully
selected features, the various algorithms performed similarly well.
Because the artificial neural network (ANN) algorithm can be
more easily implemented on the phones, it was selected for real-
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time applications. Details of the ANN design could be found in
Kong, Allen, Schreier, et al. (2016).

The final ANN structure is shown in Figure 1, which con-
sists of three input features for the input layer, a five-neuron
hidden layer, and a binary output layer. This simple structure
allows the ANN detector on the MyShake phones to capture
most characteristics common to signals generated by earth-
quakes and human activities as shown in figure 4c,d in Kong,
Allen, Schreier, et al. (2016). The current MyShake app needs
to be stationary first, which is determined by a simple short-
term average/long-term average (STA/LTA) algorithm. Once
the STA/LTA triggers, it activates the ANN algorithm to
distinguish the movements. Following the public release of
MyShake, we found that the false positive rate changes with
time, as shown in Figure 2. The STA/LTA algorithm on
the phone triggers whenever the phone moves, whereas the
ANN algorithm only triggers when the movement is similar
to that of earthquakes. The ratio between these two indicates
the average ANN false detection rate in the real world. Spe-
cifically, from 10 p.m. to 5 a.m., the ratio is mostly below 10%;
whereas from 6 a.m. to 9 p.m., the trigger rate is between 10%
and 20%. The majority of these ANN triggers are not due to
earthquakes.

The second-level detection algorithm runs on the cloud
server to collectively confirm an earthquake by considering
clusters of users’ triggers both in time and space. The current
algorithm under testing is density-based spatial clustering

▴ Figure 1. Sketch overview of the MyShake system and the machine learning (ML) algorithms that are currently used or under testing in
the system both in real time and offline modes. DBSCAN, density-based spatial clustering of applications with noise; PGA, peak ground
acceleration. The color version of this figure is available only in the electronic edition.

▴ Figure 2. Ratio of MyShake artificial neural network (ANN)
triggers to short-term average/long-term average (STA/LTA) trig-
gers. Data used here are from 1 July 2017 to 1 July 2018 in the
San Francisco Bay area of California, with a total of 4853 unique
users with 3,498,239 STA/LTA triggers and 399,903 ANN triggers.
It shows the percentage of human triggers that passed the ANN
check and were classified as earthquake-like motion for each
hour of the day during this period. The line is the median value
and the shaded area is the standard deviation. The color version
of this figure is available only in the electronic edition.
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of applications with noise (DBSCAN, Ester et al., 1996).
The algorithm has two parameters: epsilon and min_samples.
The advantage of the algorithm is that there is no need to
specify the number of clusters, and it can automatically find
all the clusters that satisfy the requirement. The algorithmic
steps are: (1) for each point in the dataset, we draw an
n-dimensional sphere of radius epsilon around the point (as-
suming we have n-dimensional data). (2) If the number of
points inside the sphere is larger than min_samples, we set
the center of the sphere as a cluster, and all the points within
the sphere belong to this cluster. (3) Loop through all the
points within the sphere with the above two steps, and expand
the cluster whenever it satisfies the two rules. (4) Points that do
not belong to any cluster are ignored or treat them as outliers.
To improve efficiency, regular grid cells of size 10 × 10 km are
used to aggregate neighboring triggers occurring within a
20 s sliding window. We currently set epsilon to 200 km and
min_samples to two grid cells. Once a cluster is formed (i.e., an
earthquake is confirmed), the system activates a grid search
on the triggers within the cluster to find the best earthquake
location and origin time. The algorithm continues associating
new triggers to the initial cluster until there are no new triggers.
Once the epicenter is determined, a trained random forest re-
gressor (Breiman, 2001) (1,000,000 randomly generated peak
ground acceleration values at various distances for different

magnitudes were used as the training data) is used to estimate
the magnitude of the earthquake based on the attenuation re-
lationship from Cua (2005).

We are currently working on a MyShake trigger simulation
platform, which builds on top of the MyShake observations to
test the detection algorithm at various locations globally. Two
examples of running the network detection algorithm are shown
in Figure 3.

Data Analysis on the Waveform Database (CNN)
The ANN algorithm running on the phones uses only a 2s
window of the waveform due to the real-time needs of earth-
quake detection. However, the classification procedure can be
significantly improved by using the longer waveform data on
the server (non-real time). Inspired by the work of Perol et al.
(2018), a convolutional neural network (CNN) is trained by
forming images using three-component waveforms to take ad-
vantage of CNNs’ significant image processing power (LeCun
et al., 2010). Because the exact horizontal orientation of each
phone is usually unknown, we permuted the three components
of the waveforms to form images using the combination of
(x, y, z), (x, z, y), (y, x, z), (y, z, x), (z, x, y), (z, y, x). Specifically,
we added the three-component waveforms to an image with
one color channel that results in a 3 by 2501 array (2501 data
points sampled at 25 Hz with 60 s of pretrigger and 40 s after

▴ Figure 3. (a) The M 5.4 South Korea event on 12 September 2016 11:32:55.770 (UTC) and (b) the M 7.8 Kaikōura earthquake in New
Zealand on 13 November 2016 11:02:56.346 (UTC). The figures show the time our algorithm detected the earthquakes in simulations of
these events, 5.5 and 13.8 s after the origin of the earthquakes, respectively. The magenta star is the catalog location whereas the green
star is the estimated location using triggers from the phones. Blue dots are the active phones sampled from the population (0.001% of the
total population), and red dots are the triggers. Red dots outside of the P (green circle) and S (red circle) waves are the noise triggers
based on the observations from the MyShake network. The blue magnitude on the right of each figure is the estimated magnitude by the
random forest regressor. Warning times, estimated, and true modified Mercalli intensities (MMIs) are shown for three cities. The color
version of this figure is available only in the electronic edition.
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trigger waveforms). To increase the size of the training datasets
and achieve better generalization, we augmented the data in the
following ways: (1) adding different levels of random noises
(a Gaussian noise with zero mean and standard deviation rang-
ing from 0 to 0:01g), (2) rotating the two horizontal compo-
nents at 5° incremental steps, (3) randomly flipping the signs of
the three acceleration components, and (4) randomly shifting
the signal by up to 2 s. These augmentations are based on the
idea of the phones having different noise levels, arbitrary ori-
entations, flipped and triggers at a different time. Altogether
1.5 million records were used in training and testing (75%

training). The noise distribution was randomly
sampled from the MyShake nonearthquake
triggers.

Figure 4 shows the formed images for earth-
quakes (Fig. 4a) and nonearthquakes (Fig. 4b).
The earthquake waveforms clearly have different
characteristics. Waveforms are only processed by
removing the mean and trend before forming the
images. After the preparation step, the images
were fed into the CNN to determine which
images indicate earthquakes. We started with a
simple network structure and gradually added
more layers. The final structure is shown in
Figure 5, which contains six convolutional layers
as well as three max-pooling layers, and there are
multiple dropout operations to reduce overfit-
ting. A fully connected layer at the end makes

the final binary decision. The overall accuracy for the test dataset
is 96.77%.

NEW DIRECTIONS AND CHALLENGES

The above ML applications show the effectiveness of finding
nonlinear decision boundaries to make decisions (ANN, CNN),
identifying spatial clustering and associations efficiently
(DBSCAN), and learning the complex physics-based functions
(random forest). Here, we discuss a few untested ideas for new
directions and challenges that we will work on. This serves as an
ML vision for the project.

▴ Figure 4. Images fed into the convolutional neural network (CNN). (a) Earthquake waveforms and (b) noise waveforms. Each figure has
2501 data points on the x axis and 2499 waveforms on the y axis, color coded by amplitude. Every three waveforms form an image that is
fed into the CNN. We plot 2499 waveforms vertically for visualization purposes. The color version of this figure is available only in the
electronic edition.

▴ Figure 5. The current CNN structure. Input data are images with 3 by 2501
dimensions. 32@3 × 2501 means that 32 feature maps are applied to the 3 by
2501 image. Conv. 3 × 3 means that a 3 by 3 kernel is used to calculate the feature
maps. MP 1 × 2 means that max-pooling (1 by 2) is applied on the feature maps.
The last layer is a flattened fully connected layer with 512 hidden units. The color
version of this figure is available only in the electronic edition.
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One Algorithm Cannot Fit All
Currently, the ANN algorithm running on users’ phones is the
same for all phones. But each user’s behavior is different, male
versus female, young versus old, and so on. Besides, the hard-
ware qualities used in the phones have a very wide spectrum.
Ideally, we would like to train a customized model for each
person to capture these details or a shared model that fits
groups of people. Two potential approaches are shown in Fig-
ure 6, which are (1) centralized learning: all users upload a few
days’ human activities to the central server and customized
classifiers are trained at the server. The trained models are then
pushed back to the phones. (2) Federated learning (Konečný
et al., 2016; McMahan et al., 2016): the users download an
initial model, and retrain the model locally on each phone.
Only summaries of the changes are sent to the centralized
server as a small focused update. These updates from each user
can be aggregated to make improvements to the initial model
to form a new shared model.

Currently, we are testing both approaches. A test version
of an Android application has been created that is able to
update the model from the server, and a TensorFlow frame-
work (Abadi et al., 2016) has been built on Android phones
to allow for training the neural network on the phones.

Dynamic Networks
Unlike traditional seismic networks where the locations of the
sensors are fixed, the MyShake network can change all the time
due to the movement of the users. Spatially, the sensors can
move from city to city. Temporally, each hour during the
day, the number of sensors which are stationary (best for
detecting earthquakes) may vary. Figure 7 shows the spatial
and temporal dynamic nature of the network.

Figure 7a shows the spatial distribution of the MyShake
users. We can clearly see the uneven spatial distribution of
the users, which can cause the network to perform better at
places where more phones are available. In addition, the con-
figuration of the network is changing. For example, Figure 7b
shows the percentage of phones that are best for detecting
earthquakes (i.e., steady for more than 30 min) during each

hour of the day. We see that the network has the best detection
capability from midnight to 6 a.m., with over 70% of
the phones being steady, whereas during the day (10 a.m. to
8 p.m.), only about 20% of the phones are in steady positions
to record good waveforms.

In summary, such spatial and temporal dynamics require
an adaptive detection algorithm that could change its param-
eters accordingly. One promising approach is to apply an ML
algorithm that learns the mapping function between the
dynamic configuration of the network and the detection
parameters so that the detection algorithm can quickly adapt
to various situations in the real world.

Spoofing the System
Real-time earthquake early warning could potentially save lives
and reduce economic losses (Strauss and Allen, 2016). But false
alarms caused by spoofing attacks could generate panic and eco-
nomic losses as well. Attacks can occur at any layer but for the
context of this article we assume that the backend infrastructure
is secured via traditional means (e.g., firewalls). Therefore, it is
important to understand and address potential spoofing of
earthquake triggers that may occur in the real world. Specifically,
there can be three different types of spoofing activities and
potential risks or vulnerabilities of the system against such
spoofed earthquake triggers: (1) mimicking earthquake-like
movements on individual smartphones to generate false triggers
and trick the ANN algorithm into thinking an earthquake is oc-
curring, (2) injecting false triggers into the system from one or
multiple independent users/phones, and (3) injecting false trig-
gers into the system at coordinated time and locations from
multiple colluding users/phones. Identifying these potential risks
and solving them is critical. Some potential solutions that go be-
yond traditional means to secure the system include adversarial
machine learning, which is the study of effective ML techniques
against an adversarial opponent (Huang et al., 2011; Tygar,
2011). Instead of trying to make a better model, the first step is
to break the trained model by thoroughly understanding the in-
put data, feature extraction, training, and the learning algorithm,
and test various cases that could break the ML algorithms used in
the system. In addition, data-driven approaches can be coupled
with physics-driven approaches. We could incorporate the physi-
cal model of how earthquake waves propagate and utilize the
patterns behind it to add additional validation checks to capture
spoofing attacks.

A Generic Sensor Collection and Fusion Platform
We hope the MyShake system/platform is just one step in the
seismology community to include more low-cost consumer
sensors. Various Internet of things devices, such as the accel-
erometers on cars, voice assistants, sensors at smart homes,
Raspberry Pi type sensors, drone videos, closed-circuit televi-
sion (CCTV) cameras at home and cities are capable of record-
ing the environment and have built-in communication units to
pass data to servers. Based on the MyShake experience, we hope
in the future we could start to host other types of sensor data
and generalize the workflow pipeline to deal with various types

▴ Figure 6. Two approaches for training customized models:
centralized learning versus federated learning. The color version
of this figure is available only in the electronic edition.
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of data on this platform. Data fusion using ML could provide
an effective solution to take advantage of information from
various data sources (Torra, 2003; Ni-Bin Chang, 2018).
There is high potential in combining the various datasets to
extract extra information using ML algorithms. For example,
a straightforward approach in feature-level fusion is to extract
features individually from each data source and feed them into
a unified ML algorithm to complete the tasks.

CONCLUSION

In this overview article of MyShake’s ML aspects, we presented
some existing efforts that apply ML to this new type of seismic
network to address various problems. Selected new challenges
and directions are also discussed here in the hope to motivate
more discussions on applying ML in Earth sciences, particu-
larly in seismology. Some of these challenges require us to
collaborate with other communities, such as computer science,
statistics, and data science. At the same time, the problems in
seismology and the data we are collecting really could drive the
development of ML and data science in the future, and the
MyShake seismic network is just one of these examples in
our field.

DATA AND RESOURCES

Data recorded by MyShake are currently archived at Berkeley
Seismological Laboratory and are constrained by the privacy

policy of MyShake (see http://myshake.berkeley.edu/privacy‑
policy/index.html, last accessed November 2018). For informa-
tion about access to the data for research purposes contact
rallen@berkeley.edu. The unpublished manuscript by A. Inbal,
Q. Kong,W. Savran, and R. M. Allen, “Toward microseismic
imaging with the dense MyShake smartphone array” and
Q. Kong, A. Inbal, S. Patel, R. M. Allen, and L. Schreier,
“MyShake: Detecting and characterizing earthquakes with a
global smartphone seismic network.”
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