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Earthquake Early Warning Systems (EEWS) are often challenged when the
earthquakes occur outside the seismic network or where the station density is
sparse. In these situations, poor locations and large alert delays are more common
because of the limited azimuthal coverage and the time required for the wavefield
to reach the minimum number of seismic stations to issue an alert. Seismic arrays
can be used to derive the directivity of the wavefield and obtain better location.
However, they are uncommon because of the prohibitive cost of the sensors.
Here, we propose the development of an array-based approach using mini-arrays
of low-cost Microelectromechanical Systems (MEMS) accelerometers and show
how they can be used to improve EEWS. In this paper, we demonstrate this
approach using data from two MEMS Accelerometer Mini-Arrays (MAMA)
deployed at University of California Berkeley and Humboldt State University.
We use a new low-cost (<U.S. $150) Data Acquisition Unit and solve for the
back azimuth of seven events with magnitudes ranging from Mw 2.7 to 5.1
at distances of 5 km to 106 km. [DOI: 10.1193/021218EQS036M]

INTRODUCTION

A significant problem faced by Earthquake Early Warning Systems (EEWS) is the correct
characterization of earthquakes that occur at either the edge of or outside of the seismic network.
Because of poor azimuthal coverage, location estimate errors can be considerable (Figure 1).
The median location error for earthquakes occurring outside of the Northern California EEW
seismic network for M≥ 4 events between 1 February 2016 and September 11, 2017, detected
by the ElarmS EEWS (Kuyuk et al. 2014) is 44.4 km, with a standard deviation of 49.9 km. In
contrast, the median location error for all M≥ 4 events that occurred within the Northern and
Southern California networks during the same time period is just 4.0 km, with a standard devia-
tion of 26.5 km. Without accurate location estimates, EEWS cannot correctly estimate ground
shaking, and they are then unable to deliver timely alerts to affected areas.

Seismic arrays have been used for nuclear test monitoring and seismological research
since the 1960s (e.g., Birtill and Whiteway 1965). They are commonly used to obtain
the slowness vector of the wavefield and to increase signal-to-noise ratio (SNR). Despite
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the obvious advantages over regular seismic networks, seismic arrays are not very common
worldwide. One reason they are not frequently used is the high cost of augmenting each
network station with further conventional seismic sensors to give it array functionality.
Here, we describe the development of an array-based approach using low-cost Microelec-
tromechanical Systems (MEMS) accelerometers.

MEMS capacitive accelerometers are devices with a very small footprint (micrometers to
a few millimeters in size) and with low power consumption. They are capable of measuring
relative gravitational changes (Middlemiss et al. 2015). MEMS have been used in seismology
since the beginning of the millennium (Holland 2003). Recently, several attempts were made
to include class-C [Advanced National Seismic System (ANSS) 2008] low-cost MEMS
accelerometers in seismological investigations, mainly by using dense networks of such sen-
sors (e.g., Clayton et al. 2015). The individual instruments can be attached to volunteers’
computers (e.g., Cochran et al. 2009), or they can be installed as independent instruments
at individual hosts (e.g., Clayton et al. 2011) or in public buildings such as schools, hospitals,
and places of worship (e.g., D’Alessandro 2014). Another approach is to exploit a network of
built-in MEMS sensors in smartphones (Finazzi 2016, Kong et al. 2016).

Figure 1. Map of M≥ 4 earthquakes occurring within (stars) or outside of (circles) California
EEW seismic network (triangles) between 1 February 2016 and September 11, 2017, and detected
by ElarmS, colored by distance error from the ANSS catalog locations. Note that there is one
event in Southern California on 10 June 2016 with a distance error of 153 km because of some
traces picking on the S-wave. Without this event, the median distance error is 3.9 km, with a
standard deviation of 9.0 km for earthquakes within the network.
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Low-cost MEMS sensors have also been used to rapidly create seismic networks, monitor-
ing aftershock seismic activity following large events (e.g., Chung et al. 2011, Lawrence
et al. 2014). Because of their low price, low power, and small size, a large number of devices
can be deployed in a short time. Another use of MEMS accelerometers in seismological research
is to combine them with single-channel GPS devices to resolve baseline errors (Minson et al.
2015, Tu et al. 2013). The development of an earthquake early warning alerting device based on
a MEMS sensor and a 10-bit digitizer has also been proposed (e.g., Zheng et al. 2011).

It is clear that these low-cost MEMS sensors with maximum resolutions of 16 bits are
capable of detecting moderate to large earthquakes at distances of several tens of kilometers
away (D’Alessandro and D’Anna 2013, Evans et al. 2014, Yildirim et al. 2015). With their
growth in popularity and commercial potential in many research fields, the sensitivity of
MEMS devices has significantly improved over time. For instance, between 2011 and
2013, the noise level of smartphone MEMS was reduced by ∼20 dB at the bandwidth of
1–10 Hz (Kong et al. 2016). Some new MEMS accelerometers currently being tested
have low noise floors of up to 2 ng/

p
Hz (Pike et al. 2014), while others have wider band-

width (as low as 10�4 Hz) and higher resolution based on resonance technology (Middlemiss
et al. 2015, Zou et al. 2014). These improvements led to the use of class-B sensors in EEWS
in Japan and Taiwan (Horiuchi et al. 2009, Wu 2015).

Available off-the-shelf class-C sensors are, however, limited to digital sensors with reso-
lutions of 16 bits or less or to analog sensors that require additional analog-to-digital con-
verter (ADC) units. In the following, we first describe our rationale for building a MEMS
Accelerometer Mini-Array (MAMA) and demonstrate its use to estimate the back azimuth
(BAZ) of local earthquakes. The array uses a new specially designed data acquisition unit
(DAU), which is a single device with integrated class-C MEMS sensor, 24-bit digitizer, and
data logger. Finally, we discuss how the application of MAMA can enhance EEWS.

MAMA DESIGN

In order to mitigate the high cost of installing a seismic array using conventional seism-
ometers, we propose the use of multiple low-cost MEMS accelerometer DAUs. They will be
arranged as a MAMA with a small aperture of 200–1,000 m, preferably around an existing
conventional seismometer or strong-motion sensor where available. Ideally, one of the DAUs
should be colocated with the existing instrument. Such a layout is designed to improve the
recordings of a single conventional network station by employing well-known array methods
whenever the epicentral distance is much greater (at least 10-times larger) than the array
aperture. For its power and telemetry needs, each DAU in the mini-array can draw from
the already available resources of the conventional station at remote locations or simply
be connected to dedicated power and Wi-Fi where available. Colocating one of the
DAUs with the conventional seismic instrument will further constrain the possible time shifts
between the time controllers of the traditional network and the MEMS DAU, which most
likely will be using Network Time Protocol. It can also be used for other quality control
evaluations based on the comparison of waveforms.

The major limitation of using a MAMA is the high intrinsic noise and low sensitivity of
currently available class-C low-cost MEMS sensors. Though these devices are still usable for
analyzing large magnitude earthquakes or moderate earthquakes at shorter distances,
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the lower quality of these devices limits the magnitude detection threshold (Evans et al. 2014).
Some examples of possible uses of MAMAs include calculating BAZ based on the arrival
times at each node or solving for the slowness vector of a wave field or its propagation pattern
within the array. For large magnitude earthquakes, where the rupture propagates along longer
fault traces, back-projecting the source location would make it possible to investigate fault
dimensions (Fletcher et al. 2006, Meng et al. 2014, Spudich and Cranswick 1984). The
method of back-projecting is commonly used at teleseismic distances and low frequencies.
Given the lower sensitivity of the MEMS and limited bandwidth, our approach is to use
MAMA for BAZ or back-projection at local distances and high frequencies of 1–10 Hz
(Allmann and Shearer 2007). In the following, we describe our new DAU device, deployment,
and processing scheme.

MAMA DAU

Currently used off-the-shelf digital class-C MEMS accelerometers are limited to 16-bit
resolution with root mean square noise levels down to 45 μg/

p
Hz (Evans et al. 2014). For a

full scale �2-g sensor, the 16-bit digitizer creates a maximum resolution (minimal single-bit
value) of 61 μg/count, provided the self-noise of the sensor is lower. In addition, off-the-shelf
sensors need to be connected to a computer or a data logger with appropriate code to make the
data available for further processing on site or at a remote data center (e.g., Clayton et al.
2015). We have developed a new low-cost (<U.S. $150) DAU (hereafter referred to as a
MAMA node). This unit consists of a printed circuit board (PCB) bearing four analog
MEMS accelerometers (�2-g range) and a 24-bit ADC, and it is combined with a Raspber-
ryPi single-board computer. The RaspberryPi serves as a data logger and is capable of pro-
viding online access to the 100 samples-per-second data streams via an onboard seedlink
server (for more technical details about the MAMA node, see online Appendix A).

The MAMA node sensor’s self-noise level of 50 μg/
p
Hz is at the lower end of the noise

range of most currently available off-the-shelf devices (Evans et al. 2014). In the current
version of MAMA node (Revision 0.3), we use four MEMS sensors in parallel to reduce
the noise by half and provide improvement of more than 15 dB over off-the-shelf digital
accelerometers. Figure 2 shows the MAMA node’s mean power spectral density (PSD;
McNamara and Buland 2004) for a 1-day period measured at the Berkeley Byerly Vault,
which also houses the conventional seismic station BKS Episensor. We also measured
the well-tested Quake Catcher Network sensor O-Navi B (Evans et al. 2014) by replacing
the PCB on our MAMA node with the O-Navi B sensor and adjusting the code appropriately.
For our frequency band of interest of 1 to 10 Hz, the mean PSD levels are –73 to –80 dB
(0.22� 10�3 � 0.1� 10�3 m2s�4∕Hz), respectively (colored lines, Figure 2). This improve-
ment, though still noisier than class-A strong-motion devices with noise levels lower than
–120 dB, significantly improves our capability to obtain useful signals of small magnitude
events and allows us to test our approach without needing significant events to occur in the
MAMA vicinity. Figure 3 shows a comparison between traces of a Güralp 5TC acceler-
ometer, a MAMA node, and an O-Navi B sensor placed at the Berkeley Byerly Vault for
a Mw 3.8 at 40 km event. This figure demonstrates the improved sensitivity of the MAMA
node over the O-Navi B, which is one of the highest grade 16-bit sensors available (Evans
et al. 2014), as well as its compatibility with a high-end standard force-balance strong-motion
sensor where the signal is above its noise levels.
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MAMA DEPLOYMENT

We deployed two MAMA arrays (Figure 4a). The first, BRK M AMA, is at the Uni-
versity of California Berkeley campus and is composed of nine nodes around the seismic
station (BK.BRK) in Havilland Hall. The maximum distance between two MAMA nodes
is 1,200 m (Figure 4b). We placed the MAMA nodes in basement or ground floor offices
or in utility rooms. Each node was connected to a wall outlet for power and attached to the
floor (aligned to magnetic north using a compass) with a two-sided tape. We note that using
this method with the coupling to the ground is not ideal, but it is a very rapid, low-cost, and
nonintrusive method suitable for offices and occupied urban areas. Communication with the
nodes is done via Wi-Fi or Ethernet. The BRK MAMA was partly operational at the end of
December 2016 and was fully deployed in May 2017.

The second MAMA setup is the Accessible Resources Center (ARC) MAMA at the
Humboldt State University campus. This array is composed of 13 nodes at nine locations

Figure 2. Mean PSD (McNamara and Buland 2004) of a representative MAMA node (MAMA
Rev 0.3, blue line) and Quake Catcher Network’s O-Navi B 16-bit MEMS sensor (O-Navi B,
green line) installed at the Berkeley Byerly Vault. The conventional strong motion sensor (Epi-
sensor) of the BK network located at the Byerly Vault is marked as a red line (BKS station) for
comparison of background noise levels. Lines are the mean PSD of the horizontal traces, between
1 September 2016 and 5 September 2016. Earthquake representative spectra responses are
marked as dark solid and dashed gray lines for near and far fields, respectively (Clinton and
Heaton 2002). New High Noise Model (Peterson 1993) is marked as a solid gray line. Earthquake
data converted to dB following Cauzzi and Clinton (2013).
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(2 nodes are collocated at four locations). No standard station is available at this site. The
maximum distance between two nodes of this MAMA is 845 m (Figure 4c). All sensors are
located at utility rooms and communicate over Ethernet. ARC MAMA has been fully opera-
tional since 9 March 2017.

Both BRK and ARC MAMA are located within the campuses where power and com-
munication are conveniently available, and MAMA node installations at utility rooms or
offices are straightforward and secured. BRK MAMA is in close proximity to the Hayward
Fault with the highest earthquake probability in the Bay Area (Field et al. 2017), and ARC
MAMA is located close to the Mendocino Triple Junction, one of the most seismically active
regions along the San Andreas fault system and where the seismic network is sparse. MAMA
node locations are based on the availability of suitable locations across the campuses.

USING MAMA TO SOLVE FOR BAZ

A seismic array consists of numerous seismic instruments located within a relatively close
range of one another. Depending on the spacing of the sensors and the wavelength of
the signal, a wavefield passing through the array may show a coherent signal. It is also pos-
sible to observe the difference in arrival times of the wavefield at each of the instruments.
Coherency and arrival time offsets can be used to increase the SNR of a recording and to
derive the slowness vector. This can provide the directivity of the wavefield signal. For
more details on seismic arrays, see Harjes and Henger (1973), Rost and Thomas (2002,
2009), Schweitzer et al. (2011), and the references therein. Here, we concentrate on using
the array capability to calculate BAZ in order to improve the EEWS earthquake location.

Figure 3. Comparison of north component from a MAMA node device (red), a Güralp 5TC
accelerometer (black), and an O-Navi B device (gray) for event nc72795746, an Mw 3.78 located
40.2 km away. All devices were colocated at Berkeley Byerly Vault. Time is relative to origin
time. Traces are bandpass filtered between 1 and 10 Hz.
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To calculate the BAZ, we used the freely available ObsPy (Beyreuther et al. 2010) FK
analysis tool. This tool uses frequency domain beamforming (i.e., Conventional or Bartlett
beamformer) to find the maximum of the power of the beam given different slowness vectors
(Bartlett 1950, Harjes and Henger 1973, Nawab et al. 1985). For each event, we calculate the
maximum power, normalized by the signal covariance (relative power) and the correspond-
ing BAZ and slowness using 1-s windows with 0.05-s steps.

Though we are aiming at developing a real-time processing module, we currently use an
automated off-line processing scheme. While the real-time module should have its own earth-
quake identifier, the current code is regularly querying USGS’s ANSS Catalog (see data and
resources section) for events of Mw> 2.5 up to a 110-km radius from the MAMA center.

Figure 4. MAMA location map. (a) General location map. (b) BRK MAMA at University of
California Berkeley campus, Berkeley, CA. BRK marks the location of the conventional BK.
BRK station at Haviland Hall. (c) ARC MAMA at Humboldt State University campus, Arcata,
CA. MAMA nodes are marked as triangles.
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We automatically process the waveforms from the MAMA nodes and the standard seismic sta-
tion as available, beginning 20 s before and ending 40 s after the origin time of the event. We use
a simple STA/LTA triggering detector to identify the event arrival if more than 40% of all traces
(two horizontals and one vertical for each node) have triggered with SNR above 5. Once an
event is labeled as “Identified,” the BAZ is then calculated using the following steps:

1. Detrend, removing a mean value.
2. Bandpass using a Butterworth filter at 1–10 Hz.
3. Remove gain value, converting to m∕s2 units.
4. Obtain a representative trace tr for each node from the three components. This is to

mitigate misaligned nodes:

EQ-TARGET;temp:intralink-;e1;41;505 tr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ E2 þ Z2

p
· signðZÞ (1)

where N, E, and U are the North, East and Z traces of the node, respectively. All
following processing is done on the representative trace tr.

5. Use a simple STA/LTA trigger to detect first arrival time to the MAMA. Calculate
the Cumulative Cross-Correlation values (CCC) for each node using the following
equations:

EQ-TARGET;temp:intralink-;e2;41;409

CCCi ¼
Xn
j≠i

ccij (2)

EQ-TARGET;temp:intralink-;e3;41;366ccij ¼
P

tri · trjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
tr2i ·

P
tr2j

q (3)

where i indicates a node, and j iterates over the rest of the n nodes.
6. Where collocated nodes exist, discard the one with lower CCC values.
7. If CCC < meanðCCCÞ � 1.5 · σðCCCÞ, then discard the trace with the lowest

CCC, recalculate CCC, and repeat discarding until a minimum of four traces
are left or no trace has such a low CCC value. This step helps to mitigate strong
site effects and poorly coupled nodes.

8. BAZ process for a span of 2 s before the first trigger and 20 s after. Processing is
done using a sliding window of 1 s and a 0.05-s step.

9. The processing results for each window are the maximal relative power of the array,
BAZ, and slowness. We derive the mean BAZ of all windows where relative power
is within the top 15% along the processing span and the slowness is below one to
exclude non–body wave signals and maintain relatively high coherence values.

RESULTS

Using the automatic processing scheme described above, between 9 March 2017 and 1
August 2017, 4 out of 23 events were identified by the BRK MAMA and 6 out of 33 events
were identified by the ARC MAMA (Table 1). Of the identified events, we successfully
calculate BAZ for three and four events at the BRK and ARCMAMAs, respectively. Figure 5
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shows the BAZ and event identification threshold with respect to magnitude and distance.
With the available data, we are able to calculate BAZ for earthquakes with magnitudes as low
as Md 2.7 at 20 km distance.

To illustrate the processing results, we show in Figure 6 the results of the FK analysis of
event nc72819101, which occurred on 2017-06-21T19:00:20, with Mw 3 at a distance of 5
km from the BRK MAMA. The observed BAZ between the MAMA center and the ANSS
catalog location is 323°. The mean calculated BAZ is 323.6°, with a standard deviation of
8.6°. The BAZ was obtained using just 1.8 s of data following the P-wave trigger. Event
nc72795746, which occurred on 2017-04-30T01:29:19, with Mw 3.78 at 41 km away
from the BRK MAMA does not perform as well. The BAZ between the MAMA center
and the ANSS catalog location is 95°. Though the mean MAMA-estimated BAZ is
95.8°, which is very close to the observed BAZ, the standard deviation is 77.3° and the
BAZ ranges from –9.5° to 162°, as shown in Figure 7. Finally, Figure 8 shows an example
of event nc72806646, which occurred on 2017-05-26T07:56:59, with Mw 2.52 at 19.9 km
away from the BRK MAMA. This event was identified by the automatic triggering, but it
failed to obtain BAZ using our current processing scheme because of low SNR. BAZ plots
for all the identified events listed in Table 1 are available in the online Appendix B.

DISCUSSION AND OUTLOOK

Comparing the MAMA nodes’ mean PSD noise floor with representative earthquake
spectral responses (Clinton and Heaton 2002) suggests that the new MAMA node described

Figure 5. MAMA detection and BAZ calculation performance. All events with M> 2.5 and less
than 110 km from a MAMA are plotted as triangles and squares for ARC and BRK MAMAs,
respectively. Red markers represent identified events with calculated BAZ within 30° of the
observed BAZ. Blue markers represent identified events with calculated BAZ more than 30°
different from the observed BAZ. Empty markers represent events unidentified by MAMA.
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above has the potential to detect peak accelerations of Mw> 2.5 earthquakes at ∼10 km and
Mw> 3.0 at ∼100 km (Figure 2). Indeed, the current MAMA node (Rev 0.3) was able to
detect a Mw 2.5 at 20 km using our automatic processing scheme.

Though our results correspond well to the expected performance of our low-cost DAU,
there are some limitations. The low number of events detected, with respect to the number of
events at a 100-km range, is a result of the low sensitivity of the sensors and the method’s
sensitivity to low SNR. This sensitivity limits the number of events available for processing
and obtaining BAZ results. Typically for EEW, destructive earthquakes of Mw> 4.5 are of

Figure 6. BAZ calculation plot for event nc72819101 2017-06-21T19:00:20, Mw 3, 5 km away
from BRK MAMA. Subplots from the top are relative power, absolute power, BAZ, slowness,
and a typical MAMA node acceleration waveform with the trigger time marked by a dashed
red line. Each point represents the calculations done for a 1-s data window ending at point
position along x-axis. Colors represent the amplitude of the relative power values. The observed
BAZ between the MAMA center and the ANSS catalog location is 323°. The mean calculated
BAZ is 323.6°, with a standard deviation of 8.6°. This result was obtained 1.8 s after the
trigger time.
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interest for mitigation actions. However, testing and training the EEWS as well as the public
would require a higher rate of events, which may not be available everywhere. For that rea-
son, higher sensitivity is required to be able to obtain BAZ results for lower magnitudes
events, which are more common.

Our new devices, when arranged in mini-arrays, can be used for improved source char-
acterization that could be particularly important for EEW. As demonstrated, the MAMA can
be used to rapidly obtain the BAZ of an event 2–3 s after the arrival of P-waves to the
MAMA, depending on the SNR. To illustrate a potential use of MAMA, Figure 9 shows
an example of a mislocated Mw 4.5 event on 5 December 2016 near Petrolia, CA. The
BAZ from the second station to detect the event, Station NC.KMPB, to the ANSS location
is 236°, while the BAZ to the ElarmS location of first alert is 303°. Assuming a MAMA
around station NC.KMPB and a 5-s delay to process the data and calculate the BAZ, a better

Figure 7. Similar to Figure 6, BAZ calculation plot for event nc72795746 2017-04-
30T01:29:19, Mw 3.78, 41 km away from BRK MAMA. The observed BAZ between the
MAMA center and the ANSS catalog location is 95°. The mean calculated BAZ is 95.8°,
with a standard deviation of 77.3°. The result was obtained 1.65 s after the trigger time.
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location might be achieved without delaying the alert time, which was sent 6 s after P-wave
arrival to the station. The large alert time delay is due to an ElarmS requirement that four
stations must have detected an event before an alert can be sent out. Combining multiple
MAMA may make it possible to robustly estimate the epicenter of an earthquake based
on just two arrays instead of the current requirement of four stations. This would decrease
the time needed for point source EEWS to issue an alert, especially where the seismic
network is sparse.

In addition to providing information about BAZ for point-source earthquakes, the evolu-
tion of BAZ information during a large magnitude event can provide more detailed source
characterization. Using local high-frequency energy back projection (e.g., Allmann and
Shearer 2007, Meng et al. 2014) allows for the estimation of the rupture propagation pattern
(speed, duration, directivity, segmentation) and the better estimation of the total rupture

Figure 8. Similar to Figure 6, BAZ calculation plot for event nc72806646 2017-05-
26T07:56:59, Mw 2.52, 19.9 km away from BRK MAMA. The observed BAZ between the
MAMA center and the ANSS catalog location is 58°. The BAZ could not be calculated because
of the low SNR.
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length. Implementing MAMA back projection in real time and incorporating that into
EEWS (Meng et al. 2014) could improve estimates of earthquake magnitude and shaking
intensity distribution based on finite-fault models rather than point-source models. Other
methods for estimating rupture size through the finite-fault approach have been developed
for EEWS using Global Navigation Satellite Systems stations (e.g., Allen and Ziv 2011,
Crowell et al. 2016, Grapenthin et al. 2014, Minson et al. 2014) or dense seismic stations
(e.g., Böse et al. 2015). Using a MAMA deployed around an existing seismic station will
allow a cost-effective augmentation of the station as well as enable finite-fault-based EEWS
in remote areas with sparse stations or no GPS measurements.

Finally, the redundant data of the MAMA can also be used to eliminate false triggers and
compute more robust event classifications, thus mitigating false alerts more common at the
edge of the seismic network (Chung et al. 2016). The robustness and rapidity of the solutions
obtained using MAMA can significantly improve warning times for natural hazards such as
earthquakes and tsunamis, providing better estimation of source parameters and expected
ground shaking (Melgar et al. 2016).

CONCLUSIONS

We have discussed the potential benefits of using MAMA in EEWS and seismological
research. By exploiting array processing approaches, cost-effective MAMA can be used for

Figure 9. ElarmS review tool snapshot of the first alert of Mw 4.5 earthquake that occurred on 5
December 2016 at 18:55. Yellow circle marks the ANSS catalog location (latitude: 40.28, long-
itude: –124.39); green circle marks ElarmS calculated location. Seismic stations used for solving
the event parameters are marked as green triangles, while other stations are marked as blue tri-
angles. The blind zone is marked as a red circle and the propagating S-wave front in increments of
1 s are marked as white circles.
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faster, more reliable earthquake location solutions, fault trace dimension estimation, and rup-
ture propagation characterization as well as to support EEWS networks, particularly around
the edges of networks and in sparsely instrumented regions. MAMA nodes can augment an
existing seismic station or be used as an additional lower-quality station to densify a seismic
network (e.g., Wu 2015). The limited resources needed to install a MAMA node also make it
appealing for fast deployment and crisis response.

We have shown examples of the usefulness of MAMA by calculating the BAZ for several
earthquakes using our new MAMA nodes. We have described a prototype of a MEMS DAU,
which includes telemetry capabilities and a data logger with a limited production cost of less
than U.S. $150, which can be further lowered by mass production. Though the device is still
under development, initial results and noise measurements show it can theoretically detect
Mw 2.5 and larger events at 10 km and Mw 4.5 and larger at 100 km (Figure 2) using a
frequency band of 1–10 Hz. Using nine-node MAMAs, currently deployed at the University
of California Berkeley and at the Humboldt State University campuses, we demonstrate BAZ
calculations of seven events ranging from Mw 2.7 to Mw 5.1 and distances ranging from as
near as 5 km to over 100 km. Future work will include improving MAMA nodes and deploy-
ing more MAMAs at various locations as well as implementing BAZ calculations in real time
(e.g., Eisermann et al. 2018).

ACNOWLEDGMENTS

Ran N. Nof was funded by a fellowship from the Geological Survey of Israel (GSI), at the
Ministry of Energy and Water Resources, and the project was supported by the United
States–Israel Binational Science Foundation and the Raymond and Beverly Sackler Fund
for Convergence Research in Biomedical, Physical and Engineering Sciences. The authors
would like to thank the Berkeley Seismology Lab Technicians, George Dorian and Zack
Alexy, and Oren Huber, Soenke Moeller, Eli Megidish, Andy Morrish, and Anatoli
Mordakhay for their tips and help with the MAMA Node PCB design. Figures in this
paper were produced by Python 2D plotting module Matplotlib (Hunter 2007) and
ObsPy (Beyreuther et al. 2010). Background maps tiles are downloaded from ESRI
world street map service: http://server.arcgisonline.com/ArcGIS/rest/services/Canvas/
World_Light_Gray_Base/MapServer (last accessed August 5, 2017). Waveform data for
this study are available upon request at the Northern California Earthquake Data Center
(Stations names are BK.BRKXX..HN? and BK.ARCXX..HN?, where XX is in the range
of 01–12 and 20–33 for the BRK and ARC MAMAs, respectively; the “?” may be replaced
by E, N, or Z for channel orientation). We would like to thank the editor, Jonathan P. Stewart,
the Associate editor, Antonino D’Alessandro, and two other anonymous reviewers for their
comments and suggestions to improve this manuscript.

APPENDICES
Please refer to the online version of this manuscript to access the supplementary material

provided in Appendices A and B.

REFERENCES

Allen, R. M., and Ziv, A., 2011. Application of real-time GPS to earthquake early warning,
Geophysical Research Letters 38, 1–7.

MAMA: A LOW-COST IMPLEMENTATION FOR EARTHQUAKE EARLYWARNING ENHANCEMENT 35

http://server.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Base/MapServer
http://server.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Base/MapServer
http://server.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Base/MapServer
http://server.arcgisonline.com/ArcGIS/rest/services/Canvas/World_Light_Gray_Base/MapServer
http://dx.doi.org/10.1029/2011GL047947


Allmann, B. P., and Shearer, P. M., 2007. Spatial and temporal stress drop variations in small earth-
quakes near Parkfield, California, Journal of Geophysical Research: Solid Earth 112, 1–17.

Advanced National Seismic System Technical Integration Committee Working Group on Instru-
mentation, Siting, Installation, and Site Metadata, 2008. Instrumentation Guidelines for the
Advanced National Seismic System, Report 2008-1262, U.S. Geological Survey Reston, VA.

Bartlett, M. S., 1950. Periodogram analysis and continuous spectra, Biometrika 37, 1–16.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y., andWassermann, J., 2010. ObsPy:

A Python toolbox for seismology, Seismological Research Letters 81, 530–533.
Birtill, J. W., and Whiteway, F. E., 1965. The application of phased arrays to the analysis of

seismic body waves, Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 258, 421–493.

Böse, M., Felizardo, C., and Heaton, T. H., 2015. Finite-Fault Rupture Detector (FinDer): going
real-time in Californian ShakeAlert Warning System, Seismological Research Letters
86, 1692–1704.

Cauzzi, C., and Clinton, J., 2013. A high- and low-noise model for high-quality strong-motion
accelerometer stations, Earthquake Spectra 29, 85–102.

Chung, A. I., Allen, R. M., Henson, I., Hellweg, M., and Neuhauser, D., 2016. ElarmS 2015
performance and new Filterbank Teleseismic Filter, in Seismological Society of America
Annual Meeting, 20–22 April, 2016, Reno, NV.

Chung, A. I., Neighbors, C., Belmonte, A., Miller, M., Sepulveda, H. H., Christensen, C., Jakka,
R. S., Cochran, E. S., and Lawrence, J., 2011. The Quake-Catcher Network Rapid Aftershock
Mobilization Program following the 2010 M 8.8 Maule, Chile Earthquake, Seismological
Research Letters 82, 526–532.

Clayton, R. W., Heaton, T., Chandy, M., Krause, A., Kohler, M., Bunn, J., Guy, R., Olson, M.,
Faulkner, M., Cheng, M., Strand, L., Chandy, R., Obenshain, D., Liu, A., and Aivazis, M.,
2011. Community seismic network, Annals of Geophysics 54, 738–747.

Clayton, R. W., Heaton, T., Kohler, M., Chandy, M., Guy, R., and Bunn, J., 2015. Community
Seismic Network: a dense array to sense earthquake strong motion, Seismological Research
Letters 86, 1–10.

Clinton, J. F., and Heaton, T. H., 2002. Potential advantages of a strong-motion velocity meter
over a strong-motion accelerometer, Seismological Research Letters 73, 332–342.

Cochran, E., Lawrence, J., Christensen, C., and Chung, A., 2009. A novel strong-motion seismic
network for community participation in earthquake monitoring, IEEE Instrumentation and
Measurement Magazine 12, 8–15.

Crowell, B. W., Schmidt, D. A., Bodin, P., Vidale, J. E., Gomberg, J., Renate Hartog, J., Kress,
V. C., Melbourne, T. I., Santillan, M., Minson, S. E., and Jamison, D. G., 2016. Demonstration
of the Cascadia G-FAST Geodetic Earthquake Early Warning System for the Nisqually,
Washington, Earthquake, Seismological Research Letters 87, 930–943.

D’Alessandro, A., 2014. Monitoring of earthquakes using MEMS sensors, Current Science 107,
733–734.

D’Alessandro, A., and D’Anna, G., 2013. Suitability of low-cost three-axis MEMS
accelerometers in strong-motion seismology: tests on the LIS331DLH (iPhone) accelerometer,
Bulletin of the Seismological Society of America 103, 2906–2913.

Eisermann, A. S., Ziv, A., and Wust-Bloch, H. G., 2018. Array-based earthquake location for
regional earthquake early warning: case studies from the Dead Sea Transform, Bulletin of the
Seismological Society of America 108, 2046–2053.

36 NOF ET AL.

http://dx.doi.org/10.1029/2006JB004395
http://dx.doi.org/10.1093/biomet/37.1-2.1
http://dx.doi.org/10.1785/gssrl.81.3.530
http://dx.doi.org/10.1098/rsta.1965.0048
http://dx.doi.org/10.1098/rsta.1965.0048
http://dx.doi.org/10.1785/0220150154
http://dx.doi.org/10.1193/1.4000107
http://dx.doi.org/10.1785/gssrl.82.4.526
http://dx.doi.org/10.1785/gssrl.82.4.526
http://dx.doi.org/10.1785/0220150094
http://dx.doi.org/10.1785/0220150094
http://dx.doi.org/10.1785/gssrl.73.3.332
http://dx.doi.org/10.1109/MIM.2009.5338255
http://dx.doi.org/10.1109/MIM.2009.5338255
http://dx.doi.org/10.1785/0220150255
http://dx.doi.org/10.1785/0120120287
http://dx.doi.org/10.1785/0120170315
http://dx.doi.org/10.1785/0120170315


Evans, J. R., Allen, R. M., Chung, A. I., Cochran, E. S., Guy, R., Hellweg, M., and Lawrence, J. F.,
2014. Performance of several low-cost accelerometers, Seismological Research Letters
85, 147–158.

Field, E. H., Jordan, T. H., Page, M. T., Milner, K. R., Shaw, B. E., Dawson, T. E., Biasi, G.,
Parsons, T. E., Hardebeck, J. L., Michael, A. J., Weldon, R., Powers, P., Johnson, K. M., Zeng,
Y., Bird, P., Felzer, K., van der Elst, N., Madden, C., Arrowsmith, R., Werner, M. J., and
Thatcher, W. R., 2017. A synoptic view of the third uniform California Earthquake Rupture
Forecast (UCERF3), Seismological Research Letters 88, 1259–1267.

Finazzi, F., 2016. The Earthquake Network Project: toward a crowdsourced smartphone-based
earthquake early warning system, Bulletin of the Seismological Society of America 106,
1088–1099.

Fletcher, J. B., Spudich, P., and Baker, L. M., 2006. Rupture propagation of the 2004 Parkfield,
California, earthquake from observations at the UPSAR, Bulletin of the Seismological Society
of America 96, S129–S142.

Grapenthin, R., Johanson, I., and Allen, R. M., 2014. The 2014 Mw 6.0 Napa earthquake,
California: observations from real-time GPS-enhanced earthquake early warning, Geophysical
Research Letters 41, 8269–8276.

Harjes, H. P., and Henger, M., 1973. Array-Seismologie, Zeitschrift für Geophysik 39,
865–905.

Holland, A., 2003. Earthquake data recorded by the MEMS accelerometer: field testing in Idaho,
Seismological Research Letters 74, 20–26.

Horiuchi, S., Horiuchi, Y., Yamamoto, S., Nakamura, H., Wu, C., Rydelek, P. A., and Kachi, M.,
2009. Home seismometer for earthquake early warning, Geophysical Research Letters 36,
L00B04.

Hunter, J. D., 2007. Matplotlib: A 2D graphics environment, Computing in Science & Engineer-
ing 9, 90–95.

Kong, Q., Allen, R. M., Schreier, L., and Kwon, Y. W., 2016. MyShake: a smartphone seismic
network for earthquake early warning and beyond, Science Advances 2, e1501055.

Kuyuk, S. H., Allen, R. M., Brown, H., Hellweg, M., Henson, I., and Neuhauser, D., 2014.
Designing a network-based earthquake early warning algorithm for California: ElarmS-2,
Bulletin of the Seismological Society of America 104, 162–173.

Lawrence, J. F., Cochran, E. S., Chung, A., Kaiser, A., Christensen, C. M., Allen, R., Baker, J.
W., Fry, B., Heaton, T., Kilb, D., Kohler, D., and Taufer, M., 2014. Rapid earthquake
characterization using MEMS accelerometers and volunteer hosts following the M 7.2
Darfield, New Zealand, earthquake, Bulletin of the Seismological Society of America 104,
184–192.

McNamara, D. E., and Buland, R. P., 2004. Ambient noise levels in the Continental United
States, Bulletin of the Seismological Society of America 94, 1517–1527.

Melgar, D., Allen, R. M., Riquelme, S., Geng, J., Bravo, F., Baez, J. C., Parra, H., Barrientos, S.,
Fang, P., Bock, Y., Bevis, M., Caccamise, D. J., II, Vigny, C., Moreno, M., and Smalley,
R., Jr., 2016. Local tsunami warnings: perspectives from recent large events, Geophysical
Research Letters 43, 1109–1117.

Meng, L., Allen, R. M., and Ampuero, J. P., 2014. Application of seismic array processing
to earthquake early warning, Bulletin of the Seismological Society of America 104,
2553–2561.

Middlemiss, R. P., Samarelli, A., Paul, D. J., Hough, J., Rowan, S., and Hammond, G. D., 2016.
Measurement of the earth tides with a MEMS gravimeter, Nature 531, 614–617.

MAMA: A LOW-COST IMPLEMENTATION FOR EARTHQUAKE EARLYWARNING ENHANCEMENT 37

http://dx.doi.org/10.1785/0220130091
http://dx.doi.org/10.1785/0220170045
http://dx.doi.org/10.1785/0120150354
http://dx.doi.org/10.1785/0120050812
http://dx.doi.org/10.1785/0120050812
http://dx.doi.org/10.1002/2014GL061923
http://dx.doi.org/10.1002/2014GL061923
http://dx.doi.org/10.1785/gssrl.74.1.20
http://dx.doi.org/10.1029/2008GL036572
http://dx.doi.org/10.1029/2008GL036572
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1126/sciadv.1501055
http://dx.doi.org/10.1785/0120130146
http://dx.doi.org/10.1785/0120120196
http://dx.doi.org/10.1785/012003001
http://dx.doi.org/10.1002/2015GL067100
http://dx.doi.org/10.1002/2015GL067100
http://dx.doi.org/10.1785/0120130277
http://dx.doi.org/10.1038/nature17397


Minson, S. E., Brooks, B. A., Glennie, C. L., Murray, J. R., Langbein, J. O., Owen, S. E., Heaton,
T. H., Iannucci, R. A., and Hauser, D. L., 2015. Crowdsourced earthquake early warning,
Science Advances 1, e1500036.

Minson, S. E., Murray, J. R., Langbein, J. O., and Gomberg, J. S., 2014. Real-time inversions for
finite fault slip models and rupture geometry based on high-rate GPS data, Journal of
Geophysical Research: Solid Earth 119, 3201–3231.

Nawab, S. H., Dowla, F. U., and Lacoss, R. T., 1985. Direction determination of wideband
signals, IEEE Transactions on Acoustics, Speech, and Signal Processing 33, 1114–1122.

Peterson, J., 1993. Observations and Modeling of Seismic Background Noise, USGS Open File
Report 93-322, U.S. Geological Survey, Reston, VA.

Pike, W. T., Delahunty, A. K., Mukherjee, A., Dou, G., Liu, H., Calcutt, S., and Standley, I. M.,
2014. A self-levelling nano-g silicon seismometer, in Proceedings of IEEE SENSORS 2014,
2–5 November, 2014, Valencia, Spain.

Rost, S., and Thomas, C., 2002. Array seismology: methods and applications, Reviews of
geophysics 40, 1–2.

Rost, S., and Thomas, C., 2009. Improving seismic resolution through array processing techni-
ques, Surveys in Geophysics 30, 271–299.

Schweitzer, J., Fyen, J., Mykkeltveit, S., Gibbons, S. J., Pirli, M., Kühn, D., and Kvaerna, T.,
2011. Seismic arrays, in New Manual of Seismological Observatory Practice (NMSOP-2)
(P. Bormann, ed.), GFZ German Research Centre for Geosciences, Potsdam, Germany, 1–80.

Spudich, P., and Cranswick, E., 1984. Direct observation of rupture propagation during the 1979
Imperial Valley Earthquake using a short baseline accelerometer array, Bulletin of the Seis-
mological Society of America 74, 2083–2114.

Tu, R., Wang, R., Ge, M., Walter, T. R., Ramatschi, M., Milkereit, C., Bindi, D., and Dahm, T.,
2013. Cost-effective monitoring of ground motion related to earthquakes, landslides, or vol-
canic activity by joint use of a single-frequency GPS and a MEMS accelerometer,Geophysical
Research Letters 40, 3825–3829.

Wu, Y. M., 2015. Progress on development of an earthquake early warning system using low-cost
sensors, Pure and Applied Geophysics 172, 2343–2351.

Yildirim, B., Cochran, E. S., Chung, A., Christensen, C. M., and Lawrence, J. F., 2015. On the
reliability of Quake-Catcher Network Earthquake Detections, Seismological Research Letters
86, 856–869.

Zheng, H., Shi, G., Zeng, T., and Li, B., 2011. Wireless earthquake alarm design based on MEMS
accelerometer, in 2011 IEEE International Conference on Consumer Electronics, Communi-
cations and Networks (CECNet), 16–18 April, 2011, XianNing, China.

Zou, X., Thiruvenkatanathan, P., and Seshia, A. A., 2014. A seismic-grade resonant MEMS
accelerometer, Journal of Microelectromechanical Systems 23, 768–770.

(Received 12 February 2018; Accepted 20 July 2018)

38 NOF ET AL.

http://dx.doi.org/10.1126/sciadv.1500036
http://dx.doi.org/10.1109/TASSP.1985.1164705
http://dx.doi.org/10.1029/2000RG000100
http://dx.doi.org/10.1029/2000RG000100
http://dx.doi.org/10.1007/s10712-009-9070-6
http://dx.doi.org/10.1002/grl.50653
http://dx.doi.org/10.1002/grl.50653
http://dx.doi.org/10.1007/s00024-014-0933-5
http://dx.doi.org/10.1785/0220140218
http://dx.doi.org/10.1109/JMEMS.2014.2319196

