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Supplemental Material

The MyShake project aims to build a global smartphone seismic network to facilitate
large-scale earthquake early warning and other applications by leveraging the power of
crowdsourcing. The MyShake mobile application first detects earthquake shaking on a
single phone. The earthquake is then confirmed on the MyShake servers using a “net-
work detection” algorithm that is activated by multiple single-phone detections. In this
part one of the two article series, we present a simulation platform and a network
detection algorithm to test earthquake scenarios at various locations around the world.
The proposed network detection algorithm is built on the classic density-based spatial
clustering of applications with noise spatial clustering algorithm, with modifications to
take temporal characteristics into account and the association of new triggers. We test
our network detection algorithm using real data recorded by MyShake users during the
4 January 2018 M 4.4 Berkeley and the 10 June 2016 M 5.2 Borrego Springs earthquakes
to demonstrate the system’s utility. In order to test the entire detection procedure and
to understand the first order performance of MyShake in various locations around the
world representing different population and tectonic characteristics, we then present a
software platform that can simulate earthquake triggers in hypothetical MyShake net-
works. Part two of this paper series explores our MyShake early warning simulation
performance in selected regions around the world.

Introduction
Earthquake early warning (EEW) is a technology that uses net-
works of seismometers to quickly determine the location and
magnitude of an earthquake after it has begun and issues warn-
ings to regions anticipated to experience shaking (e.g.,
Kanamori, 2007; Allen et al., 2009; Allen and Melgar, 2019).
Such alerts are typically sent within seconds of the earthquake
origin time and can provide up to several minutes of warning
depending on the geometry of the monitoring network and the
distance between the event and population centers (Allen,
2011, 2013). During this warning time, actions can be taken
by individuals and organizations that could potentially save
lives and mitigate damage (Strauss and Allen, 2016). To be
effective, EEW requires the existence of a dense seismic net-
work that has the capability of real-time monitoring of poten-
tial earthquake signals. The closer the instruments are to the
epicenter, the faster the detection, and hence the larger the
warning times can be. EEW has been mainly developed using
traditional seismic and geodetic networks, which are costly to
operate and only exist within a small number of countries

(Allen and Melgar, 2019). Much of the global population at
high risk from earthquake damage thus currently is not bene-
fitting from EEW.

Many alternative, cheaper, nontraditional networks have
been proposed, including microelectromechanical system
accelerometers installed in buildings, Universal Serial Bus
(USB) accelerometers attached to personal computers or other
low-cost sensory equipment such as the Quake Catcher net-
work, community seismic network, P-alert, and Raspberry
Shake (Cochran et al., 2009; Luetgert et al., 2009; Chung
et al., 2011; Clayton et al., 2015; Wu, 2015; Wu et al., 2016;
Nugent, 2018). Although promising, these ideas suffer from
the same disadvantages as traditional networks in that they
require physical installation and maintenance by the network
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operators, which hampers the sustainability and expandability
of the EEW system, especially in remote regions.

Recent advances in mobile accelerometer technology mean
that smartphones are becoming a viable alternative to fixed
seismometers as the primary sensing instruments for EEW
(Faulkner et al., 2011; Dashti et al., 2012; Finazzi, 2016;
Kong, Allen, Schreier, and Kwon, 2016). Furthermore, there
is also interest in the development of the smartphone networks
that use Global Positioning System and users’ mobile applica-
tion launching times to detect earthquakes (Minson et al.,
2015; Bossu et al., 2018; Steed et al., 2019). There are many
advantages of using smartphone networks for this application:
The devices are globally ubiquitous, even in regions without
traditional earthquake monitoring. Because the hardware is
maintained by the users, the only requirement for the network
operators is to develop and market a software application that
can be made accessible via the Google Play or iOS store, and
then to maintain a cloud server to collect data. This makes the
network easier to maintain and grow.

However, the use of smartphones for EEW is not without its
challenges. Namely, the detection software must be capable of
reliably distinguishing between earthquake shaking and all other
vibrations that the device might experience. Furthermore, the
noise floor of mobile accelerometers is significantly higher than
that of traditional seismometers, the extent of coupling between
the smartphone and the ground may be poor, and the recording
of earthquakes is not a priority for users.

MyShake is a smartphone application developed at the
University of California, Berkeley Seismology Lab to monitor
smartphone accelerometer data and detect earthquakes. It uses
an artificial neural network (ANN) trained on examples of
earthquake and nonearthquake waveforms and is able to suc-
cessfully distinguish earthquake motions from human activity-
related motion recorded by the phone (Kong, Allen, Schreier,
and Kwon, 2016; Kong, Inbal, et al., 2019). The MyShake appli-
cation monitors the accelerometer on the device and sends
real-time messages containing time, location, and ground
acceleration data to a server when earthquake-like motions are
detected. Kong, Allen, Schreier, and Kwon (2016) and Kong,
Inbal, et al. (2019) should be consulted for a complete descrip-
tion of the MyShake application and its operation. Since the
app’s first public release in February 2016, MyShake phones
have successfully recorded over 900 earthquakes worldwide; the
app has approximately 300,000 downloads and 40,000 active
users, with approximately 6000 devices making data contribu-
tions daily. The data recorded by MyShake has potential uses for
various applications such as mapping ground motion (Kong,
Allen, and Schreier, 2016), routine seismic operation (Kong,
Patel, et al., 2019), building health monitoring (Kong et al.,
2018), and dense array detection (Inbal et al., 2019).

EEW is also a goal of this global smartphone seismic net-
work. In regions where there are no traditional seismic net-
works or early warning capabilities, MyShake could work as

a standalone system to detect earthquakes and issue warnings
to the public. Furthermore, in regions where traditional EEW
does exist, MyShake could provide additional data and serve as
a platform to deliver the alerts from traditional EEW systems.
In October 2019, for example, the MyShake mobile application
started to deliver EEW warnings in California from the state-
wide ShakeAlert EEW system, which uses a traditional seismic
network (Strauss et al., 2020). The use of MyShake as platform
to deliver EEW alerts produced by traditional seismic networks
is beyond the scope of this article; here, we provide an analysis
of the capabilities of MyShake smartphone network alone.

Because of the fact that the current MyShake network is rel-
atively sparse, especially outside the United States, the potential
for MyShake networks to contribute to EEW has not been sys-
tematically assessed beyond a handful of basic simulations.
Such systematic assessment is vital before MyShake can begin
to issue public early warnings. The usefulness of MyShake
networks for early warning will vary from region to region,
depending on a wide range of factors such as the distance
between population centers and active faults, the density and
distribution of MyShake users and the origin time, and the
magnitude of the earthquake. Quantification of these factors
will allow the MyShake development team to identify regions
of the world where EEW with MyShake would be feasible and
most beneficial, the minimum number or density of users
required for accurate rapid detections, and the likely warning
times that could be issued to major population centers in the
event of large earthquakes.

The purpose of this article is to describe a simulation plat-
form that can be used to understand MyShake EEW perfor-
mance under the condition that we have a sufficiently dense
network of users, for example, 0.1% of the population. Our net-
work detection algorithm is designed to detect earthquakes by
clustering triggers from phones in both time and space. This
first part of our two-article series describes a simulation plat-
form and a network detection algorithm that have been built to
understand the performance of MyShake networks. The plat-
form, built on top of MyShake observations with the aid of a
simple physics model and a series of machine learning algo-
rithms, can be used to test and understand the whole MyShake
workflow from individual phone triggers to the final detection
of the earthquake and estimation of the alerting area. It can
simulate the trigger times and ground acceleration values that
might be expected from hypothetical MyShake networks res-
ponding to given input events and population densities. The
locations, times, and ground motions reported by individual
phones are provided to a network detection algorithm, which
first determines whether or not an earthquake is occurring and
then uses the trigger information to estimate the earthquake’s
location and magnitude. Once the earthquake has been located,
the system estimates the radius of the region expected to ex-
perience shaking of intensity ≥ MMI 4, for which a warning
could be issued. As the simulation proceeds, the earthquake
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hypocenter parameters are updated as more trigger informa-
tion becomes available.

We test our network detection workflow on real data col-
lected from devices running MyShake during the June 2016
M 5.2 event in Borrego Springs, California, and January
2018 M 4.4 event in Berkeley, California, which are currently
the locations with the highest density of MyShake users. Had
the system been operating at the time, it could have provided
about 6 s of warning before the arrival of strong shaking at
Palm Springs and several seconds to much of the San
Francisco bay area. This confirms the ability of MyShake net-
works to issue useful early warnings.

Following this test with real data, we conduct simulations
for all historical earthquakes M > 4:0 since 1 January 1980 for
a range of earthquake-prone regions around the world includ-
ing California, New Zealand, Nepal, Central America, Haiti,
and Sulawesi (Indonesia) in addition to several others shown
in the supplemental material. These simulations are described
in part two of this two-article series.

Overview of the Simulation Platform
Our simulation platform consists of several components, as
shown in Figure 1, which is a mechanism for simulating
MyShake-phone networks and their response to earthquakes.
It is supplied with the coordinates of the region of interest,
the proportion of the population of that region assumed to
have the MyShake app installed, and the parameters of the
earthquakes to be simulated (i.e., location, origin time, and
magnitude). At each timestep of the simulation, ground ac-
celeration values at each device are estimated and used to
determine if the device will trigger. Although hypothetical
by nature, this simulation function builds upon observa-
tions of real MyShake networks to set thresholds for device

triggering, in addition to un-
certainties in the reported
times and acceleration values.

In this section, we des-
cribe each component of the
MyShake simulation workflow,
beginning with how we sample
the population, to simulating
triggers on a device level for
our network detection algo-
rithm. For each component,
we note the parameters that
can have a significant impact
on the results and justify our
choice of their default values.

Sampling the population
Prior to each simulation, we
need to determine the spatial
distribution of the simulated

MyShake network. This is done by inputting the fraction of
the population of the region of interest assumed to have the
MyShake application installed on their mobile device. Currently
we use 0.1% as a default. User locations are then found by ran-
domly sampling cells of a 1 km × 1 km grid within the area of
interest with a sampling probability weighted by the population
in that cell. Once a cell has been identified, the coordinates of the
simulated device are drawn from a uniform distribution within
the cell. The world population data are obtained from the 2015
Gridded Population of the World, Version 4 (GPWv4; Center
for International Earth Science Information Network [CIESIN],
2016). This procedure allows for random sampling of the pop-
ulation while also taking density into account, naturally leading
to a greater density of simulated devices in urban areas.

Identifying stationary phones
In the current MyShake deployment, a phone must be station-
ary for 30 min before it starts to monitor for earthquake shak-
ing. We use a relationship based on data from the existing
global MyShake network to estimate the proportion of active
devices that are steady, given the origin time of the event to be
simulated. The proportion of MyShake devices that are steady
for more than 30 min varies significantly over each 24 hr cycle,
reflecting the temporal, dynamic nature of the network and is
shown in Figure 2. Figure 2a indicates that the network has
more phones steady for detecting earthquakes at night than
in the daytime. This difference is encoded into the simulation
platform. As a result, the detection capability of the smart-
phone network changes throughout the day, with the most
phones being steady at night. To illustrate this point, we con-
ducted 100 simulations of a theoretical M 3.7 earthquake
occurring in Berkeley at different times throughout the day
(with an epicentral location the same as that of the 4 January

Figure 1. Workflow for the MyShake simulation platform and network detection algorithm.
DBSCAN, density-based spatial clustering of applications with noise.
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2018 Berkeley event). Figure S5, available in the supplemental
material to this article, displays a detection rate of 85%–98%
during night hours, when there are considerably more steady
phones. In contrast, during the day the detection rate drops to
about 60%–75% due to the reduction in the number of steady
devices.

Determining which phones will trigger
The triggering mechanism of individual phones for the current
simulation platform is determined by an amplitude-based
approach. Ground-motion accelerations associated with P and
S waves at each device are estimated using the distance–mag-
nitude relationships developed by Cua and Heaton (2009),
which, given an event magnitude and distance, return the
mean and standard deviation of the estimated ground-motion
distribution for P and S waves separately. These relationships
are empirical, based on observations from earthquakes in
southern California and known to saturate for events of
M > 6:5 (Cua and Heaton, 2009). Nevertheless, they provide
a convenient and relatively accurate way for us to estimate
ground-motion values. Therefore, we should be cautious when
interpreting ground motions reported by these relations for
earthquakes far in excess of M 6.5.

The ground motion associated with each device is then
sampled from the normal distribution returned by the Cua
and Heaton (2009) relationships. If the reported ground
acceleration value at a device exceeds 0:01g, the phone is
assigned a triggering probability of 0.8. Below this threshold,
the phone will have a triggering probability defined by
p � amplitude=0:01. This 0:01g threshold was determined
via the observation that more than 80% of phone triggers from
the real MyShake network have amplitudes larger than 0:01g at
the trigger time (Fig. 2b).

Analysis of real MyShake triggers has indicated that it is
possible to discriminate between whether the phone has trig-
gered on a P or S phase by calculating the ratio between the

maximum amplitude recorded on the vertical component and
the maximum value on the horizontal components in a 2 s
window around the trigger. Our tests indicate that this phase
discrimination procedure has an accuracy of 70%, so in the
trigger simulation workflow it labels the phase of the pick with
a 70% accuracy. Random triggers are also simulated at a rate
determined by the triggering rate from the data collected by
the MyShake network at each hour of the day. Then at each
timestamp, we use the random triggering rate to determine
the number of phones in the region that will also send trig-
gers that are not caused by the earthquake and have random
amplitudes.

Determining phone trigger time and shaking
amplitude
We assume constant P- and S-wave velocities of 6.10 and
3.55 km/s, respectively, in a half-space model, which allows
us to determine travel times of phases to each device. This is
clearly a simplification of the true velocity structure, but it gives
us a first-order estimation of the performance of the system. To
account for uncertainties in the observed trigger times from
real events due to poor clock accuracy, or the phone not trig-
gering on the onset of the P wave due to a high-noise level, we
sample P-trigger times from a half-normal distribution with a
standard deviation of 2 s centered at the predicted P-arrival
time, which requires the triggers only trigger after the P-wave

(a) (b)

Figure 2. (a) Ratio of phones that are steady (stationary) for more
than 30 min during each hour of the day. The solid line is the
average percentage, whereas the shaded area is the standard
deviation. The data shown here were obtained from MyShake
users between 1 July 2017 and 1 July 2018 (modified from fig. 7b
in Kong, Inbal, et al., 2019). (b) Normalized cumulative frequency
of the amplitude value at the time of the trigger from 10,377,964
MyShake recordings. The color version of this figure is available
only in the electronic edition.
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arrival, and S triggers from a normal distribution with a stan-
dard deviation of 2 s centered on the predicted S-arrival time.
The shaking amplitude of the triggered phone is set to the value
sampled from the Cua and Heaton (2009) relationship.

Figure 3 shows a comparison of trigger times recorded by
MyShake devices during the 2016M 5.2 Borrego Springs event
in southern California and those simulated by the trigger gen-
eration algorithm. Here, we assume 0.1% of the population are
MyShake users. Figure 3 shows the triggers generated by the P
and S waves, in addition to some random background triggers
in both cases. It is clear that the simulation is able to capture
the general characteristics of how the MyShake network
responds to events. However, our simple amplitude-based
approach loses more P-wave triggers at further distances than
the ANN algorithm used by MyShake phones.

During the development of the triggering mechanism, we
also attempted use of the Southern California Earthquake
Center (SCEC) broadband platform (Dreger et al., 2015;
Maechling et al., 2015) to generate earthquake waveforms
from M 4.0 to 8.0 at a very dense grid-station configuration,
and evaluated the ANN algorithm’s triggering performance.
However, we observed that the SCEC broadband platform does
not generate realistic high-frequency P-wave components to
trigger the algorithm. We, therefore, proceed with our simu-
lations using the amplitude-based triggering approximation,
which is a simpler approach with some limitations. These lim-
itations include the fact that the amplitude-based triggering
will lose more P-wave detections at greater distances due to
smaller amplitude, whereas the ANN will not because it uses
both amplitude and frequency content to trigger.

Overview of Network Detection
Algorithm
This section introduces a network detection algorithm that
takes trigger times, locations, and ground acceleration values
from the triggered phones and uses them to (1) determine if
the network is experiencing an earthquake and (2) if an earth-
quake is occurring, estimate its location, origin time, and mag-
nitude as quickly as possible. This algorithm can be run on data
received by real MyShake devices as in our Borrego Spring and
Berkeley test cases or from simulated triggers.

Network detection with modified DBSCAN
clustering
Our network detection workflow has the task of using either
simulated or real-world trigger information to quickly detect
that an earthquake is occurring and then determine its origin
time, magnitude, and hypocenter parameters. MyShake net-
works present unique challenges for rapid network detection
when compared to those composed of traditional seismometers

(a) (b)

Figure 3. (a) Actual and (b) simulated trigger times as a function of
epicentral distance for the June 2016 M 5.2 Borrego Springs
earthquake. The red and green dashed lines show the predicted
arrival times of the P and S phases assuming constant velocities of
6.10 and 3:55 km=s, respectively, and an event depth of 10 km.
These three parameters are fixed in all simulations. The actual
data represent just 2500 active phones, whereas in the simu-
lation platform with 0.1% of the population, this number
increases to about 40,000. The color version of this figure is
available only in the electronic edition.
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(Kong, Lv, and Allen, 2019). These include the fact that the
network configuration varies over time, the fact that triggers
can occur on either P or S waves, and potential inaccuracies
in trigger timing data due to an inaccurate phone clock and
the high-noise floor on mobile accelerometers. Finally, the
detection algorithmmust be capable of accounting for spurious
or random triggers that are caused by nonearthquake shaking.
The network detection problem essentially is a real-time spa-
tial–temporal clustering problem. We applied a modified
version of density-based spatial clustering machine learning
algorithm—density-based spatial clustering of applications
with noise (DBSCAN) (Ester et al., 1996) to tackle these chal-
lenges, which is able to reliably locate earthquakes with reason-
able accuracy.

To make the DBSCAN algorithm more reliable and speed
up the processing in real time, instead of using individual
phone triggers to search for clusters, we divide the region of
interest into grid cells using the military grid reference system
(MGRS) (Lampinen, 2001) with 10 × 10 km resolution. Each
cell is assigned a weight that can be considered a measure
of its reliability in the detection algorithm. The weights are cal-
culated by dividing the number of triggers in each cell by the
number of steady phones in the cell, and they are updated over
time as more information becomes available. If a cell contains
more than five steady phones and the weight is above 0.5, then
it is designated a possible candidate for clustering, or we say
that the cell is activated.

Once two or more cells are activated within a 20 s sliding
window, the DBSCAN algorithm will start to form clusters to
determine if an event is occurring. The advantages of using
DBSCAN are (1) there is no need to specify the number of
clusters, (2) the algorithm can automatically label data points
that do not belong to any clusters as noise. The DBSCAN

algorithm has two parameters: epsilon (a radius parameter)
and min_samples (the parameter for setting the minimum
number of activated cells to create a cluster). The algorithmic
steps are: (1) for each centroid of the activated cells, we draw a
circle of radius epsilon around the centroid. (2) If the number
of activated cell centroids inside the circle is larger than the
min samples, we set the center of the circle as the cluster,
and all the centroids within the circle belong to this cluster.
(3) Loop through all the centroids within the circle with the
previous two steps to grow the cluster, whenever the centroids
satisfy the two rules. (4) Centroids that do not belong to any
cluster are ignored and treated as noisy outliers. By default,
we set epsilon at 200 km and min samples to two grid cells.
Once clusters have been formed, each cluster of cells reported
by DBSCAN represents a single event. This approach effec-
tively prevents random triggers from being considered part
of an earthquake cluster. Furthermore, because DBSCAN is

(a) (b)

Figure 4. Visualization of the detection process during a simula-
tion of the 1994 M 6.7 Northridge earthquake in Los Angeles.
(a) The situation 4 s after the origin time. Black dots represent
MyShake devices that have triggered since the start of the event.
Yellow squares are the military grid reference system (MGRS) grid
cells known by the algorithm to contain triggers. The green circle
represents the estimated location of the P-wave front at this time,
whereas the blue circle shows the location of the S-wave front.
An earthquake has not yet been declared, because there are
insufficient triggers to activate two or more cells. (b) The situation
at 5 s after the origin time. Four cells (highlighted in yellow) have
now activated, and they have been clustered to represent a single
event. Triggers within these four cells are then used to estimate
the event location and magnitude. The color version of this figure
is available only in the electronic edition.
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a density-based clustering algorithm that does not require a
user-specified number of centroids, the network detection
algorithm has the capability of detecting multiple earthquakes
simultaneously. This is essential if it is to be run continuously
on a global network. A visual explanation of this clustering
approach is shown in Figure 4.

The network detection algorithm uses several user-defined
parameters that have the potential to exert significant influence
on its performance in the real world. These include the mini-
mum number of steady phones required in each MGRS grid
cell, the fraction of these steady phones that need to trigger
before the cell is considered activated for clustering, and the
size of the cells themselves. In practice, adjustment of these
parameters provides a tradeoff between the speed and accuracy
of detection. Typically, the more triggers that must be accumu-
lated before an event is declared, the more accurate is the loca-
tion, but the longer it will take to alert. Conversely, lowering
the threshold for detection not only leads to faster alert times
but also makes it easier for spurious triggers to influence the
detection. Thus, when this network detection algorithm is
applied to real MyShake networks, it is likely that the param-
eters will need to be adjusted from region to region to provide
optimal results.

Earthquake location, origin time, and magnitude
Each cluster of cells contains triggers that can be used to locate
the event associated with that cluster. This is done by finding a
hypocenter location and origin time that minimizes the follow-
ing objective function, which is a weighted sum of square
residual travel times

EQ-TARGET;temp:intralink-;;41;353 J�X;Y ;T� �
Xn
i�1

wi

�
�ti − T� − Di

VPS

�
2
;

EQ-TARGET;temp:intralink-;;41;298 Di � Distance�trigger latitudei; trigger longitudei;X;Y�;

in which w is the weighting of the MGRS cell containing the
trigger, t is the trigger time, T is the origin time of the event, D
is the distance between the trigger and the event location, and
VPS is the velocity of the phase of interest. X and Y are the
event latitude and longitude, respectively. The workflow has
access to phase information from the triggers. We assume the
depth of the event is 10 km without searching for depth in real
time and the goal is to choose a suitable X, Y , and T such that
this objective function is minimized.

If the minimization fails to converge within 5000 iterations
of the Nelder–Mead method (Kelley, 1999), a grid search for
the optimal location and origin time is carried out. The grid
search approach is more time consuming and less accurate
due to constraints imposed by the grid step size. However,
in practice the optimization fails in less than 5% of all the simu-
lated cases.

Once the event has been located, its distance from each trig-
ger is determined, and its magnitude is estimated by providing
the distance and ground acceleration value to a random forest
regressor trained on synthetic ground accelerations. The train-
ing dataset for this model is generated by applying the Cua and
Heaton (2009) amplitude relations to a range of synthetic mag-
nitudes and distance values, with magnitudes fromM 3.5 to 9.0
in steps of 0.1 and distance from 1 to 300 km in steps of 1 km.
As discussed previously, the Cua and Heaton (2009) relation-
ship is developed from observations of earthquakes with mag-
nitudes up to 6.5. We use these relations for events up toM 9.0
just to accommodate some of the M 8’s in the second paper for
magnitude estimation. This is a limitation to our approach but
represents the best approximation available to us. A million
trigger samples are generated for P and S waves separately. The
random forest model encodes the ground-motion relationships
into a simple map relating epicentral distance and ground
acceleration to magnitude. The inputs to the model are the log-
arithm of epicentral distance and ground-motion acceleration,
and the output is the estimated magnitude of the earthquake.
We performed a grid search to find the optimal hyperpara-
meters for the random forest model, producing the following
optimal results: 100 trees, a minimum number of 200 samples
to split an internal node, and a minimum number of 100 sam-
ples on each leaf.

After testing several approaches, we found that training two
separate random forest models for P- and S-wave triggers
yields the best results. Separate random forest regressors are
trained for magnitude estimation from P- and S-wave ampli-
tude information, with each trigger being passed to the appro-
priate model according to its associated phase flag. The final
event magnitude estimate is then given by the mean of these
trigger magnitudes. To test the performance of the trained ran-
dom forest, we randomly generate accelerations for 100 trig-
gers (a mixture of P and S) for each magnitude from the range
of M 3.5–9.0 with distance randomly sampled from 1 to
100 km. Then, we input the acceleration and distance from
these 100 triggers at each magnitude to the trained random
forest models to estimate the magnitude. The performance
of this magnitude estimation approach is elucidated in
Figure 5. The models exhibit good performance up to a mag-
nitude of about 6.5, with some overestimation at low magni-
tudes. Figure 5 shows saturation above M 6.5, which is
expected given the magnitude range of events used to create
the Cua and Heaton (2009) relationships.

Because time progresses beyond the initial earthquake loca-
tion step, shaking emanates from the hypocenter in a charac-
teristic pattern governed by the speed of P and S waves. To
improve the initial location estimate, our network detection
algorithm can perform a series of updates using additional
trigger information, as it becomes available. Any additional
triggers must be either associated with an earthquake or dis-
carded, if they are spurious. The association of new triggers to
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the detected events is done by checking if the trigger time of the
device is within a time–space box for P and S waves. This
updating step is set to occur every 0.5 s, with all the triggers
associated with the events, although this value could eventually
be adjusted dynamically to take population density into account.
The location, origin time, and the magnitude of the earthquake
are updated with the arrival of the new triggers until the user-
specified number of updates is reached. The alerting area cur-
rently set in the simulation platform is the area with shaking
intensity above MMI 4. The shaking intensity is calculated based
on the relationship described by Worden et al. (2012).

Events Recorded by the Existing
MyShake Network
There are currently only a small number of regions where the
network of MyShake users is approaching densities sufficient
for effective early warning; this is also the reason we build this
simulation platform to evaluate the potential performance at
various places. Only two of these regions, the San Francisco
Bay Area and Los Angeles area, have experienced sizable earth-
quakes since the launch of MyShake in 2016. This, in part,

explains our reasoning for the creation of the simulation plat-
form, which allows us to test hypothetical scenarios around the
world. However, as a test of our network detection algorithm,
we apply it in simulated real time to the stream of triggers from
actual MyShake-phones returned during the 4 January 2018
M 4.4 Berkeley and 10 June 2016M 5.2 Borrego Springs events.
We also conducted 100 simulations for each event, and the
error distributions for magnitude, location are provided in
the supplemental material.

The Berkeley event occurred directly beneath an urban area.
We input these triggers into the network detection workflow.
Movies S1–S3 illustrate the full results, whereas Figure 6 shows
a snapshot at the time of the first alert with the initial location
and magnitude estimation for this event. Because of the rela-
tively high density of MyShake phones in the city of Berkeley,
we found that setting the MGRS grid cell size used for cluster-
ing to 1 × 1 km cells and the minimum number of steady
phones required within each cell to two (Fig. 6b, Movie S2)
increased the warning time compared with their default values
of 10 km resolution and six phones (Fig. 6a, Movie S1). With
this improvement, the first alert is sent out 5.7 s after the origin
time of the event, which gives centers of San Francisco and San
Jose at 0.7 and 13.3 s warning time, respectively (until the pre-
dicted S-wave arrival). This illustrates the need to have an
adaptive threshold for different regions depending on the den-
sity of the network. However, even with the default values the
event is detected within 6.7 s of the origin time, providing sev-
eral seconds of warning for much of the San Francisco Bay
Area. The initial location has a relatively small epicentral dis-
tance error of 4 km and remains very close to this value during
subsequent updates. The magnitude of the event is a little over-
estimated, as expected given the test shown in Figure 5, and
correspondingly the estimated intensities are slightly higher
for various locations for both cases. This test suggests that
had the network detection algorithm been operational during
this event in 2018, it could have provided early warnings.

The Borrego Springs event poses a more challenging test of
the network detection algorithm, because it occurred in a
remote location about 50 km south of Palm Springs, where
all of the initial triggers are located. Thus, the initial azimuthal
distribution of triggers is not ideal, and the algorithm must be
capable of associating later triggers to the same event, even
though they occur at great distances from the original cluster.
It is important for any network detection workflow to deal with
such a situation, because it will be common in regions featuring
major faults far from population centers. Despite these chal-
lenges, using its default settings, our network detection algo-
rithm performs relatively well, locating the event with an
initial error of about 14 km and a magnitude underestimation
of 0.3 units. A warning time of 5.5 s is provided to Palm
Springs, and people near San Diego would receive warning
of about 40 s. The red circle shows the radius of the region
expected to experience shaking of intensity 4 and above.

Figure 5. Estimated event magnitudes using our magnitude
estimation workflow. This test dataset consists of events with
magnitudes between 3.5 and 9.0. For each event, 100 trigger
distances are drawn from a uniform distribution between 0 and
100 km from the event. Then for each trigger, the Cua and
Heaton (2009) distance–amplitude relationships are used to
estimate a ground acceleration distribution, from which a value
was randomly drawn. The generated P- or S-wave triggers will
have a 70% chance of having their phase labeled correctly.
Triggers flagged as “P” are provided to a random forest regressor
trained solely on P-wave amplitudes, and triggers flagged as “S”
are provided to a separate regressor trained on S-wave ampli-
tudes. A single magnitude estimate is given for each trigger, and
the mean of these estimates over all triggers becomes the output
magnitude. This workflow exactly emulates the simulation
platform. The color version of this figure is available only in the
electronic edition.
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Discussion
Our network detection algorithm and the simulation platform
are designed to facilitate global EEW capabilities for the
MyShake smartphone seismic network. Once the current algo-
rithm is deployed and more real MyShake trigger data become
available, we foresee both challenges and opportunities for
improvement.

The current triggering mechanism for individual phones in
our simulation platform is an amplitude-based approach,
which captures the general triggering pattern from the current
MyShake network but could be improved. The ANN algorithm
used in the MyShake application uses both the frequency and
amplitude information from the waveforms. This is different
from the current implementation of our amplitude-based
approach and represents a future option for improving the
simulation platform.

Rapid and accurate magnitude estimation is another area
where improvements could be made. The challenge is that
earthquakes of a given magnitude produce broad distributions
of ground motion with large uncertainties at a given distance.
This is especially true for smartphones, which are typically in
buildings and exhibit a wide range of ground-coupling scenar-
ios. There is also the added complication that the phones can
be triggered either on the P or the S phase. In the simulation
platform, our trigger generation workflow attempts to account
for some of the uncertainties by sampling from a distribution
with uncertainties built-in. However, because the peak ground
motions for earthquakes of different magnitudes overlap con-
siderably at a given distance, especially for the P-wave ampli-
tude, it is difficult for any model to accurately estimate
magnitude from an initial acceleration observation alone.

The two real events that recorded by MyShake users show
very interesting results and provide insight into potential
improvements to the system. The Berkeley event rerun illustrates
the need to have an adaptive detection procedure for which the
parameters of the algorithm can be updated to reflect different

network configurations. As indicated by Figure 6, the effective-
ness of the warning can change with different parameter settings:
regions with higher population density can make use of smaller
MGRS grid cells to improve the detection speed of the earth-
quake, thus increasing the warning time and reducing the radius
of the blind zone for the region. The Borrego Springs event
(Fig. 7) illustrates a case when there are few users close to the
earthquake, meaning that it takes a relatively long time for the
system to detect the earthquake. In California, there is also a well-
established, relatively dense network of traditional seismic sen-
sors that could potentially be utilized alongside MyShake users to
facilitate faster and more reliable EEW in this region.

Another consideration is the number of false positive detec-
tions generated by the network detection algorithms. We run a
simulation for 365 days in southern California without any
earthquakes, and no false positive events were detected. This
is not saying the system is perfect without false detection.

Figure 6. Initial performance of the network detection algorithm
using real MyShake triggers to detect and locate the January
2018 M 4.4 Berkeley event. Both panels correspond to the
moment of the first location of the event. (a) Performance with
the default settings of 10 km resolution MGRS grid cells for
clustering and a minimum of six steady phones required in each
cell for it to be considered for clustering. (b) The results with
parameters modified to optimize detection speed, with 1 km
resolution MGRS grid cells and a minimum of two phones steady.
Green dots are devices running MyShake at the time of the
earthquake, whereas orange dots are devices that triggered. The
figures also show the estimated positions of the P and S
wavefronts at the shown snapshot in time, and the estimated
radius of shaking intensity greater than MMI 4 (red circle). When
optimized for detection speed, the algorithm locates the event
using seven triggers within 5.7 s of the origin time, providing a
warning for much of the San Francisco Bay Area. Movies S1 and
S2 should be consulted for more information. The color version
of this figure is available only in the electronic edition.
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Currently, the false positive events are not so well quantified,
because we do not have a large number of false positive sam-
ples from the system. The individual phone false positive rate is
averaged in each hour of the day, and so does not capture the
edge case when a large number of phones produce false triggers
all at roughly the same time (e.g., at 7 a.m., many people may
get up and have relatively the same behavior similar to earth-
quake motions). Fortunately, we have not seen cases like this in
the MyShake network so far, which we believe is due to the
ability of the ANN algorithm to filter out most human activ-
ities. However, we should expect to begin to see false positives
as the density of MyShake phones increases, especially in
densely populated areas. In such a situation, the network detec-
tion algorithm provides us with the ability to respond by tun-
ing parameters such as the threshold for individual cells to
activate. These parameters serve as a quality control filter that
will need to be tuned at on a by-region basis.

Besides earthquake detection and parameter estimation, a
fundamental aspect of EEW involves considering the fastest,
the most effective methods of alerting the public. These consid-
erations are beyond the scope of this article, but we acknowledge
their importance for the success of any EEW system. On 17
October 2019, MyShake started to issue ShakeAlert EEWs state-
wide in California from the traditional seismic network. This pro-
vides us a platform to start tackle these questions. Within the first
week of the announcement, there were about 500,000 new down-
loads across California on top of the existing MyShake network.

Conclusion
The global MyShake network is
currently in its infancy, and
there are an insufficient num-
ber of users in most parts of
the world to reliably evaluate
the EEW capabilities of the sys-
tem. For this reason, we have
built a simulation platform and
used it to develop a new net-
work detection algorithm.

Two of the earthquakes
recorded by MyShake users
are used to evaluate the perfor-
mance of the network detec-
tion algorithm on real phone
data: The 4 January 2018M 4.4
Berkeley event and the 10 June
2016 M 5.2 Borrego Springs
event. Despite the challenges
associated with the currently
sparse MyShake network, both
events would have been located
rapidly and relatively accu-
rately using our network detec-
tion approach. Several seconds

of warning could thus have been provided to major urban areas
before the onset of the largest shaking.

Part two of this series builds on the work presented here to
use the simulation platform and the network detection algo-
rithm to evaluate the first-order performance of MyShake in
hypothetical earthquake scenarios around the world. These
simulations provide us with an understanding of the potential
future performance of MyShake networks.

Data and Resources
The U.S. Geological Survey (USGS) Comcat catalog can be accessed at
https://earthquake.usgs.gov/fdsnws/event/1/. The data for the
Gridded Population of the World can be accessed at https://beta
.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-
to-2015-unwpp-country-totals. MyShake data are currently archived at
Berkeley Seismology Lab and their use is constrained by the privacy
policy (http://myshake.berkeley.edu/privacy-policy/index.html). All
websites were accessed in May 2020.
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