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ABSTRACT
In the field of ground-motion modeling, the availability of densely sampled ground-motion
data is becoming key to mapping repeatable source, path, and site effects to enable ground-
motion models (GMMs) to more accurately predict shaking from future earthquakes. This is
particularly important because the field is moving toward nonergodic GMMs with spatially
variable coefficients. To achieve the level of sampling required, the addition of non-instru-
mental data collected at very high spatial resolution, like felt intensity data or smartphone
data, could prove essential. The predictive power of this nontraditional data for free-field
ground motion needs to be tested before these data are used. In this work, we present a
new database of over 1600 ground-shaking waveforms collected between 2019 and 2023
by the MyShake smartphone app, which delivers earthquake early warning messages to
users on the U.S. West Coast. We develop a GMM, MyShake GMM, for peak smartphone-
recorded accelerations in 3≤M≤5:5 earthquakes recorded at short ( < 50 km) distances.
We compare ourmodel with free-field GMMs and showa similar geometric decay and a close
match in predicted amplitudes for short-period spectral accelerations (SAs). We use residual
correlation analysis to show that MyShake GMM residuals have a positive correlation with
free-field residuals, with correlation coefficients of around 0.4 for peak ground acceleration,
velocity, and short-period SA, similar to correlations previously reported between felt inten-
sity and free-field data. This illustrates the potential that densely sampled smartphone
ground-shaking data has in identifying repeatable free-field ground-motion effects for
various ground-motion modeling applications. These could potentially include highly loca-
tion-specific assessments of site response, ground-motion interpolation schemes like
ShakeMap, or validating outputs from nonergodic, spatially variable coefficient GMMs.

KEY POINTS
• Smartphone waveforms provide complementary cover-

age to free-field ground-motion data.

• A predictive model is developed for peak smartphone
acceleration.

• Systematic effects mapped by smartphone data show

predictive power for free-field ground motion.

Supplemental Material

INTRODUCTION
The prediction of earthquake ground motion for a site for a spe-
cific earthquake scenario, given a magnitude, source-to-site dis-
tance, and site condition, is a key issue in the field of seismic
hazard analysis. At present, seismic hazard models like the U.S.
National Seismic Hazard Model rely on ground-motion models
(GMMs) to convert earthquake rate models into predictions of
ground motion over the entire domain of interest (Moschetti
et al., 2024; Petersen et al., 2024). The development of GMMs
relies on the availability of large databases of ground-motion
records that sample the entire ranges of earthquake magnitudes,

distances, and site conditions well enough to allow for the con-
straining of coefficients. Traditionally, GMMs were developed
under the ergodic assumption (e.g., Abrahamson and Silva,
1997), whereby it was assumed that similar tectonic regions
behaved similarly (e.g., attenuation for all active crustal regions
globally behaved the same) in terms of magnitude scaling and
the distance attenuation of ground motion. This allowed model
developers to use data from other regions to improve data cover-
age in a key region of interest (e.g., data from Taiwan used to
informmodels for California). More recently, the field of GMMs
has been gradually evolving to remove the ergodic assumption.
First, partially nonergodic GMMs were developed that explicitly
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accounted for the repeatable site effects by removing the site-to-
site variability from the aleatory variability and including the
estimate of the site-specific site term as part of the median
(McCann and Addo, 2012). This approach was called single-sta-
tion sigma. Next, differences in the distance attenuation, site
scaling, and the constant term for broad regions were included
in the GMMs. The GMMs developed in the Next Generation
Attenuation-West2 (NGA-West2) project (Bozorgnia et al.,
2014) are an example of regionalized GMMs. The current
state-of-the-art lies with fully nonergodic models that model
systematic source, path, and site effects on the ground motion
by allowing the coefficients of the GMM to vary spatially
(Landwehr et al., 2016; Lavrentiadis et al., 2022). This can be
thought of as a regionalized GMM with small regions of dimen-
sions represented by the spatial correlation lengths of the coef-
ficients. For sites located far away from data, the median
nonergodic model falls back to the ergodic backbone GMM,
but with large epistemic uncertainty in the nonergodic terms.
The estimation of variance and correlation lengths of the non-
ergodic terms requires dense data coverage. There is an increas-
ing number of studies trying to use spatially dense simulated
records of earthquakes to increase the spatial coverage (e.g.,
Sung et al., 2023), but these simulations depend on having a
correct earth structure and earthquake source model, which
are assumptions that are hard to verify.

New nonergodic models can benefit from dense crowd-
sourced data for either estimation or validation of nonergodic
terms. Felt intensity observations from the U.S. Geological
Survey (USGS) “Did You Feel It?” (DYFI; Quitoriano and
Wald, 2020) generally track trends observed in instrumental
free-field ground-motion measurements (Atkinson and
Wald, 2007) and have been used to conduct various
ground-motion studies at high spatial resolution in which seis-
mic sensor data are sparse or nonexistent (e.g., Van Noten
et al., 2017; Rosset et al., 2022). The MyShake smartphone plat-
form provides another alternative dataset for dense spatial
coverage of ground motion. MyShake is a free smartphone
application available for both iOS and Android devices
with about 3 million users globally. The app currently has
about 2 million users on the U.S. West Coast alone, where
it serves as one of the principal delivery mechanisms for earth-
quake early warning (EEW) alerts issued by the USGS
ShakeAlert (EEW) system (Given et al., 2018; Strauss et al.,
2020; Patel and Allen, 2022). MyShake data provide a key
means of assessing warning times to users (Patel and Allen,
2022). However, MyShake was originally conceived as a global
crowdsourcing platform for earthquake data (Kong, Allen,
Schreier, and Kwon, 2016). MyShake currently provides a sim-
ple thumbnail-based survey to enable the user to submit felt
reports that perform comparably with DYFI data in capturing
felt intensity (Kong et al., 2023). It also collects triggered accel-
eration waveforms using the onboard smartphone acceler-
ometer.

The triggered waveforms collected by MyShake have been
used recently to successfully measure building structural
response to earthquake shaking (Patel et al., 2023), but given
their dense spatial sampling, they could also illuminate fine-scale
details of ground motion (Kong et al., 2018, 2019; Patel and
Allen, 2022). Smartphone acceleration data from MyShake and
other smartphone data collection efforts like the Earthquake
Network (Finazzi, 2016, 2020) generally show expected trends,
like peak accelerations that increase with magnitude and decrease
with distance (Kong, Allen, and Schreier, 2016; Finazzi et al.,
2024). Such trends have already been leveraged for the develop-
ment of smartphone-based magnitude scaling laws for EEW
applications (Kong, Allen, Schreier, and Kwon, 2016; Finazzi
et al., 2024). However, a detailed study of how smartphone accel-
erations compare to free-field records as well as the predictive
power smartphone data hold for estimating free-field ground
motion remains lacking. Patel and Allen (2022) used smartphone
waveforms from five events in California to study the relation-
ship between smartphone-recorded peak acceleration and peak
ground acceleration (PGA) in the free field. They found that
MyShake smartphone waveforms record accelerations that were
a median of 3.1 times higher than those recorded at free-field
sites. This is an intriguing observation that merits further inves-
tigation before MyShake data can be used to study ground
motion. Although there is a large factor between the smartphone
PGA values and the free-field PGA values, the spatial distribution
of the smartphone residuals may be correlated with the spatial
distribution of the free-field PGA residuals, which would allow
the smartphone data to help constrain or test the nonergodic
models for free-field ground motions.

In this study, we compile an expanded smartphone wave-
form database, with a focus on the U.S. West Coast. We then
analyze the differences between free-field and smartphone-
recorded ground-motion intensity in a ground-motion frame-
work, using GMMs. We develop a predictive GMM for
MyShake smartphone-recorded peak acceleration and use it
to investigate the correlation of repeatable effects captured
by the MyShake and free-field intensity measures (IMs), using
the residuals from GMMs. We show MyShake data have com-
parable predictive power to felt intensity data for free-field
ground motion when it comes to short-period metrics.
With this in mind, we discuss potential applications for the
MyShake model and dataset in ground-motion modeling.

SMARTPHONE WAVEFORM DATABASE
To assess the utility of triggered smartphone acceleration
waveforms for ground-motion modeling, we first assemble a
database of smartphone records of ground shaking from
cataloged earthquakes.

Waveform recording by MyShake devices is initiated via two
alternative avenues. Waveform recording can be triggered via a
trigger declared by an onboard instance of a short-term/long-
term average (STA/LTA) triggering algorithm (Allen, 1978)
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and confirmed as earthquake-related via a shallow artificial neu-
ral network (ANN) classifier (Kong, Allen, Schreier, and Kwon,
2016). Alternatively, user devices are instructed to record in all
instances in which the phone is found to be within the modified
Mercalli intensity (MMI) II (defined by the MMI 1.5 computed
radius) contour issued by the USGS ShakeAlert system and the
ShakeAlert maximum magnitude estimate isM ≥ 3.5 (Patel and
Allen, 2022). This means that the system not only triggers wave-
form recordings in cases in which the ShakeAlert public alerting
thresholds of MMI III and magnitude 4.5 (Kohler et al., 2020)
are met but also does so for smaller earthquakes with a large
potential for providing waveform data. Five minutes of wave-
form data, 1 min before and 4 min after the trigger time, are
collected on the phone and are transmitted to the MyShake
backend servers when the device is connected to power and
Wi-Fi (Patel and Allen, 2022). Three-component (vertical
and two orthogonal horizontal components) waveforms are
stored for analysis along with the device-provided location,
phone elevation, and horizontal location uncertainty.

To build our smartphone ground-motion record database,
we first search the MyShake waveform archive for any wave-
forms that were triggered within magnitude-dependent spatio-
temporal windows (see Table S1, available in the supplemental
material to this article) with respect to all earthquakes in the
USGS Comprehensive Earthquake Catalog (ComCat; Guy
et al., 2015) at M ≥ 2.5 for the period 1 January 2019–16
February 2023. Through this process, we associate a total of
18,943 individual records with 1675 earthquake events. Next,
to ensure only waveforms with a convincing earthquake signal
are used for analysis, we inspect all waveforms manually.

We inspect waveforms visually in a window from 1 s before
the estimated P-wave arrival at the phone’s location to 1.5
times the S-wave arrival time (using constant VP and VS of
6 and 3.5 km/s, respectively). We use the following criteria
to admit waveforms for further analysis:

1. The waveform includes a signal at least 2 s before the esti-
mated S-wave arrival.

2. There is a convincing earthquake signal with a clear peak.
3. There are no visible glitches, unnatural spikes, or cyclical,

repeating signals.
4. There is no obvious clipping (due to phone sliding; Patel

et al., 2023).

All waveforms that pass visual inspection are trimmed to
the signal window, restored to horizontal, and high-pass fil-
tered at 0.5 Hz to eliminate any long-period drifts. We record
MyShake peak acceleration as the maximum of the two as-
recorded restored horizontal components. We also compute
the geometric mean of the two horizontals. To produce our
final database, which we call the MyShake ground-motion
database (GMDB), only waveforms with a device-reported
horizontal location accuracy of 35 m or better are admitted.

Following this quality assurance procedure, we are left with
1619 waveforms (i.e., 8.5% of initial waveforms) from a total
of 224 individual earthquake events. Locations of records and
events are shown in Figure 1. 85% of MyShake GMDB records
were triggered by receipt of an EEWmessage, with the remain-
ing 15% of recordings triggered by the onboard STA/LTA +
ANN triggering logic. Perhaps unsurprisingly, the vast major-
ity (96%) of our waveforms are located in California and clus-
ter strongly around large urban centers like the Los Angeles
basin and the San Francisco Bay Area, where MyShake serves
large numbers of users as part of the EEW alerting effort.

For the earthquakes in our final database with at least one
smartphone record, we assemble an event information table
using source information from the USGS ComCat. We collect
the authoritative epicenter, depth, magnitude, focal mechanism,
and finite-fault model (if available). In cases in which the events
have a moment magnitude (Mw) available, it is preferred,
whereas for those events without anMw, we use the catalog pre-
ferred magnitude (usually local magnitudeML, or duration mag-
nitude MD), following the practice used in the NGA-West2
database (Ancheta et al., 2014). We also classify events as
strike-slip, normal, reverse, or oblique, following the scheme
described in García et al. (2012), using the faulting mechanisms
provided by moment tensors (where available) or first-motion
polarity focal mechanisms. Using the event information, we
calculate hypocentral (Rhyp) and epicentral (Repi) distances for
all smartphone records, as well as rupture (Rrup) and
Joyner–Boore (RJB) distances for records, causative events of
which have a finite-fault model available. For events without
a finite-fault model, we assume Rrup � Rhyp and RJB � Repi. We
use the time-averaged shear-wave velocity in the top 30 m (VS30)
as a site parameter. We assign each record a value from the
2022 update of the Thompson et al. (2014) map-based VS30

model for California (for California records) or the USGS
global VS30 mosaic (Heath et al., 2020) via the nearest-neighbor
interpolation.

The magnitude–distance distribution of our dataset against
the NGA-West2 database is shown in Figure 2. In the 4 yr
covered by our dataset, MyShake managed to collect one-tenth
of the total number of records included in the NGA-West2
database, which covers almost 80 yr of records. We see that
MyShake records overwhelmingly sample small and moderate
magnitude (M 3.0–6.0) earthquakes at relatively short source-
to-site distances. The smartphone database adds considerable
data density at these short distances and small-to-moderate
magnitude earthquakes. Few data points are added at M ≥
5.5, owing to MyShake GMDB’s short temporal sampling of
the earthquake record.

COMPARISON OF SMARTPHONE AND FREE-FIELD
OBSERVATIONS
We next compare MyShake-recorded waveforms to free-field
ground-motion records, extending the analysis that Patel and
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Allen (2022) conducted on five California earthquakes. To per-
form this analysis, we cast both the free field and the smart-
phone records in ground-motion residual space (with respect
to the NGA-West2 suite of active crustal GMMs), rather than a
straight comparison to free-field observations, as was done by
Patel and Allen (2022). We believe that using the NGA-West2
suite of active crustal GMMs should represent free-field
ground motion well on average, given these were derived using
the extensive NGA-West2 database and avoid any potential
selection bias. Furthermore, viewing ground-motion datasets
in residual space is a popular way of analyzing spatially variable
systematic effects with respect to median models and studying

Figure 1. Events sampled by the MyShake database and locations of smart-
phone waveforms in California. 96% of the total 1619 records in the
MyShake ground-motion database (GMDB) are located within the plotting
area of this map and are plotted here. Events are plotted as stars scaled by
magnitude. Waveform records are plotted as dots. We also plot faults active
within the last 15 ky from the U.S. Geological Survey Quaternary Faults
Database (U.S. Geological Survey and California Geological Survey, 2020) as
red lines. The blue polygon indicates the area where events and records are
considered for further ground-motion analysis in the Ground-Motion
Modeling Methodology section. The color version of this figure is available
only in the electronic edition.
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potential correlations of systematic effects across different
ground-motion metrics (e.g., Baker and Cornell, 2006; Carlton
and Abrahamson, 2014).

To make a fair comparison, we limit the MyShake database
to the active crustal region from which records were included
in the NGA-West2 database (see Fig. 1), and for which the
NGA-West2 suite of active crustal GMMs applies. For all
earthquakes for which at least one smartphone record is avail-
able, we download all available free-field station observations
used for computing the event ShakeMap from the USGS
ComCat. We then compute median ground-motion amplitude
predictions for all five ShakeMap output intensity metrics

(PGA, peak ground velocity [PGV], and spectral acceleration
[SA] at 0.3, 1.0, and 3.0 s) for all MyShake and free-field obser-
vation sites using a weighted average of the Abrahamson et al.
(2014; hereafter, ASK14), Boore et al. (2014; hereafter,
BSSA14), Campbell and Bozorgnia (2014; hereafter, CB14),
and Chiou and Youngs (2014; hereafter, CY14) NGA-West2

Figure 2. Magnitude–distance distribution of the MyShake GMDB against
the Next Generation Attenuation-West2 (NGA-West2) database. Only
data at RJB ≤ 300 km is shown. The color version of this figure is available
only in the electronic edition.
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GMMs. For events without a finite-fault model, we use the
hypocentral distance as the input rupture distance and the
hypocentral depth as the depth to the top of the rupture
(ZTOR). We evaluate GMM predictions for each site using
the site VS30 but set the basin amplification terms to zero.
ShakeMap observations are reported as the maximum of the
two horizontal components, whereas GMM predictions are
for the median rotation-dependent amplitude (RotD50); we
therefore adjust the RotD50 GMM prediction accordingly
using the ratios of Boore and Kishida (2016).

Finally, we form total ground-motion residuals (δij) for all
observations as

δij � ln�Yij� − ln�μ�Mi,Rij,VS30,j,…��, �1�

in which Yij is the observed ground-motion amplitude

and μ�Mi,Rij,VS30,j,…� is the GMM prediction for the ith

earthquake observed at the jth site. In this formulation, over-
prediction by the GMM yields a negative residual, whereas
underprediction yields a positive residual.

We plot the individual observations, as well as binned means,
against magnitude and Joyner–Boore distance (RJB) in Figure 3.
It can be clearly seen that with respect to predicted PGA, the
MyShake records are biased high, whereas the free-field records
are mostly centered around zero, indicating the NGA-West2
GMMs are unbiased, as previously found by Chatterjee et al.
(2022). The magnitude of the overprediction for the MyShake
data varies with magnitude and distance. The sample mean of
δij,PGA is 1.2 natural log units, or 3.7 times, even higher than the
median factor of 3.1 reported by Patel and Allen (2022). When

(a)

(b)

Figure 3. Comparison of total (δij ) peak ground acceleration (PGA) residuals
(ln[osberved]–ln[predicted]) of MyShake (turquoise) and ShakeMap (gray)
observations against an average prediction from an ensemble of NGA-
West2 ground-motion models (GMMs), in natural log units, plotted against
(a) Joyner–Boore distance and (b) magnitude. Individual observations are
shown as dots. Filled symbols (dots for MyShake and squares for ShakeMap
free-field data) indicate binned means and error bars indicate standard
deviations. These are plotted with a slight offset for clarity. The color version
of this figure is available only in the electronic edition.
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we subset the dataset to include only the events Patel and Allen
(2022) considered, we are able to reproduce their results. When
the same exercise is repeated for SA(0.3 s), we find a sample
mean of 0.9 natural log units, or 2.4 times, with similar distance
and magnitude trends. This is higher than what Patel and Allen
(2022) report, but essentially confirms their conclusion that
when attempting to model MyShake data using free-field
GMMs, the closest match is achieved using short-period
(0.1–0.3 s) SA as the target IM. This is in line with the fact that
MyShake smartphone waveforms are recorded within buildings
and therefore capture ground motion modified by the building’s
response, as well as any potential effects of nonstructural ele-
ments that hold the phones. Most waveforms in our database
can be traced back to regions dominated by low-rise (1–3
story-tall) residential buildings, which are expected to have fun-
damental periods in the 0.1–0.5 s range (American Society of
Civil Engineers, 2021).

It is clear from this analysis that forming MyShake ground-
motion residuals with respect to free-field GMMs, for applica-
tions like ShakeMap or partially nonergodic ground-motion
modeling, would result in biased residuals. A correction by
simply subtracting a static bias would not be viable, given that
the bias varies with magnitude and distance. We thus propose
that MyShake smartphone acceleration observations should
be treated as a distinct IM, rather than considered to sample
free-field acceleration. We, therefore, proceed to derive a
“ground-motion” model specifically for smartphone-recorded
peak acceleration.

GROUND-MOTION MODELING METHODOLOGY
Data subsetting
To develop a predictive model for MyShake smartphone-
recorded peak accelerations, we start by selecting a subset of
our dataset, such that model coefficients are well constrained
by the data. We also seek to enable meaningful comparisons with
the NGA-West2 active crustal GMMs, which are generally appli-
cable down to M 3.0 and at distances <300 km. As seen in
Figure 2, there is a lack of MyShake data at distances >80 km.
Furthermore, data are extremely sparse aboveM 6. For instance,
the only records at 5.5< M <6.0 are waveforms at R > 100 km
from the 2020M 5.8 Lone Pine earthquake. We thus select only
records with 0 ≤ Repi ≤ 50 km, recording events of 3.0 ≤ M ≤
5.5, that lie within the blue “Data Screening” box in Figure 1
and have depths ≤20 km.

The final dataset of selected records and events is described
in Figure 4. Ninety-two events, sampled by a total of 942
records, are included in our final dataset. About 85% of events
(78 events) have 10 waveforms or less, whereas 29% of events
(27 events) have 3 waveforms or more (Fig. S2). The dataset is
strongly dominated by data in the San Francisco Bay Area and
the Los Angeles basin, which are major urban areas with a large
MyShake user base. Figure 4c shows that the VS30 distribution
of the selected records is dominated by records with a VS30

around the C/D National Earthquake Hazards Reduction
Program (NEHRP) site class boundary (median of 316 m/s).
Our VS30 distribution is very similar to the VS30 distribution
sampled by global felt intensity reports in the USGS DYFI
database used by Allen et al. (2012). This is not surprising,
as both MyShake and felt intensity data overwhelmingly sam-
ple urban areas.

Functional forms and model fitting
To determine our predictive model for smartphone-recorded
peak acceleration, we use simple functional forms for the
source (magnitude) and path (geometric spreading) terms
that are common in ground-motion modeling and are sup-
ported by the data. For instance, Figure 5 shows a clear decay
of MyShake accelerations with distance. There is a depend-
ence with magnitude that we capture with a linear magnitude
scaling term. We do not see a magnitude saturation effect (a
“bunching” of points from larger magnitude events) that
would justify using quadratic or higher-order terms in the
magnitude scaling. Most GMMs for free-field ground
motions include a site term, but we did not include the site
(linear VS30 scaling) because there is only weak dependence
on VS30 in the smartphone data.

We attempt to fit increasingly complex model forms to the
data, starting from a simple form with just source (linear mag-
nitude scaling) and geometric spreading terms, only adding
more parameters when they result in a tangible reduction in
the model standard deviation. Our final model form is inspired
by the small-magnitude GMM of Atkinson (2015) and is as
follows:

ln�Yij� � c0 � c1M � c2Zhyp � c3 ln�Rhyp�, �2�

in which Yij is the MyShake peak acceleration produced by

earthquake i at record location j, M is event magnitude,
Zhyp is hypocentral depth, Rhyp is hypocentral distance, and

c0 − c3 are model coefficients. Our formulation differs from
Atkinson (2015) in that it does not make use of the saturation
distance heff to mimic near-field ground-motion saturation,
which manifests as curvature and a plateau at near-fault dis-
tances in Rhyp space due to finite-fault effects (Yenier and

Atkinson, 2014). We elect to exclude distance saturation
because there is no visual evidence for curvature in Rhyp space

in Figure 5, and finite-fault effects should be near-negligible for
our magnitude range.

We fit our model using the one-stage mixed-effects
approach of Abrahamson and Youngs (1992), in which
the base model (fixed effects) is fit via maximum-likelihood
estimation while allowing a random per-event intercept.
This random intercept is conventionally referred to as the
event term. Event terms allow for earthquakes that produce
below-average or above-average ground motions and can
be thought of as the average of the total residuals over all
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records for one event. The Abrahamson and Youngs (1992)
approach allows for event terms to be estimated even for
events with just one record. For such poorly sampled events,
the residual is partitioned into the event term and the within-
event residual based on the ratio of the standard deviations
for these two terms, whereas for increasingly well-sampled
events, the event term converges to the average of total
residuals (Abrahamson and Youngs, 1992; Abrahamson
and Silva, 1997). We choose to keep poorly sampled events
(with less than three records) to better sample inter-event
variability and to prevent only a few events from controlling
the magnitude scaling at the 4.0 ≤ M ≤ 5.0 range.

We model each observation using a model of the form

ln�Yij� � μ�Mi,Rij,…� � δBi � δWij, �3�

in which μ�Mi,Rij,…� represents the median model prediction
given in equation (2), δBi is the event term for the ith earth-
quake, and δWij is the remaining (within-event) residual, fol-

lowing the notation of Atik et al. (2010). The method assumes
that δB and δW are independently and normally distributed
with standard deviations τ (between-event standard deviation)
and ϕ (within-event standard deviation), respectively.

The final fitted model takes the form

ln�Yij��−4:116�1:201M�0:072Zhyp −1:627ln�Rhyp�: �4�

MODEL OVERVIEW
The final model is shown in Figure 6 as applied to two
well-sampled events in MyShake GMDB: the September 2020
M 4.5 El Monte, Los Angeles, earthquake and the December
2022 M 3.3 Union City, East Bay Area, earthquake. The figure
highlights the excellent visual fit to the data in both cases as well
as the utility of applying event term-based corrections.

Model standard deviation and residuals
We quantitatively assess our model’s performance against the
data by considering model residuals. Plots of between- and

(a) (b)

(c) (d)

Figure 4. Distributions of predictive event and record variables for the final
dataset used in the fitting of MyShake GMM: (a) distribution of event
magnitude; (b) distribution of event depth; (c) distribution of record epi-
central distance; and (d) distribution of assigned record VS30. Black vertical
lines show NEHRP site class boundaries for site classes B–E. The color
version of this figure is available only in the electronic edition.

Volume 115 Number 1 February 2025 www.bssaonline.org Bulletin of the Seismological Society of America • 93

Downloaded from http://pubs.geoscienceworld.org/ssa/bssa/article-pdf/115/1/86/7080556/bssa-2024209.1.pdf
by University of California Berkeley Library, rallen 
on 21 February 2025



within-event residuals are shown in Figures 7 and 8. We test
the model assumptions of normality in the within- and
between-event residuals using a Lilliefors test for normality
(Lilliefors, 1967). Both sets of residuals pass the Lilliefors test
at the 5% level of significance, indicating no statistically signifi-
cant deviation from normality.

The model standard deviation (σ) is 0.85 natural log units
(translating into a spread of 2.3 times about the model median
in arithmetic units) partitioned into model between-event
standard deviation τ � 0:46 and within-event standard
deviation ϕ � 0:71). By observing plots of the spread in resid-
uals against predictive variables (Figs. 7 and 8), we conclude
that there is no evidence to suggest the standard deviation
depends on any of our predictive variables. We thus propose
a constant standard deviation for our model. The total
standard deviation is in line with the σ of 0.75–0.90 natural
log units reported for NGA-West2 free-field models for
high-frequency SA in M 3–4 events (Gregor et al., 2014).
Our model’s τ is very similar to the τ of 0.4 natural log units
reported in the NGA-West2 models, even though we are
using a smaller number of events.

Between-event effects. Between-event residuals did not
show any trends with respect to magnitude (Fig. 7a), showing
our simple source scaling does well for the restricted range of
magnitudes used in our model. By contrast, we observed a

need to include a depth scaling term. In the initial version
of our model that omitted the depth scaling term, we
observed an asymmetric distribution of between-event resid-
uals (δB), with event terms trending upward with increasing
hypocentral depth (i.e., median amplitudes tended to be
higher for deeper events), as shown in Fig. 7c,d. This trend
persists for events with event terms constrained by three
or more records, in which event terms become more reliable
(see Fig. S3). Median high-frequency ground motions have
been seen to increase for deeper events, especially at small-
to-moderate magnitudes (Boore et al., 2014). This effect
has been linked with an increase in stress drop with depth,
less strong attenuation in source regions, or a combination
of both (Abercrombie et al., 2021). A number of modern
free-field GMMs incorporate depth scaling (e.g., ASK14;
CB14; CY14). We elected to correct for this effect using a lin-
ear depth scaling inspired by the CB14 GMM. This centered
the between-event residuals about zero and achieved a 20%
reduction in the modeled between-event standard deviation

(a) (b)

Figure 5. MyShake accelerations for all records in the dataset, (a) against
epicentral distance and (b) against hypocentral distance. Data are binned in
0.5 unit magnitude bins, which are distinguished by different symbols and
colors. The number of MyShake records in each magnitude bin is given in
brackets in the figure legend. The color version of this figure is available only
in the electronic edition.
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(τ) from 0.57 to 0.46 natural log units, as seen by comparing
Figure 7c and 7e, and 7d and 7f.

Within-event effects. In Figure 8, plotting within-event
against Repi and Rhyp, we observe no trends with respect to either
of these two distance metrics, indicating that our choice of func-
tional form does well to capture median geometric spreading
trends in the data. In our final model, the geometric spreading
coefficient (c3) is −1.627 and was the most strongly constrained
coefficient in the regression (as it was the coefficient with the
smallest relative standard error, see Table S2), in addition to pro-
viding a very satisfactory visual fit to the geometric decay of
MyShake peak accelerations. Our data justifies using a single
rather than a magnitude-dependent c3 coefficient, with no signifi-
cant trends in within-event residuals with Rhyp across different
magnitude bins (Fig. S4). Our c3 coefficient implies geometric

spreading steeper than the R−1 decay expected for body waves
traveling in a half-space, which would be expected to dominate
peak amplitudes in our chosen distance range. However, it is sim-
ilar to geometric spreading slopes found in the CB14 and CY14
NGA-West2 GMMs for SA at 0.1–0.3 s. It is also extremely similar
to the geometric spreading slope obtained for SA at 0.2 and 0.3 s

(a) (b)

(c) (d)

Figure 6. Model predictions and data for (a,b) the September 2020 M 4.5 El
Monte, Los Angeles, earthquake and (c,d) the December 2022 M 3.8 Union
City, East Bay Area, earthquake. We show the median model prediction as a
dashed line and the event-term-adjusted model prediction as a solid line. Data
is plotted as circles, colored by the assigned VS30 value. We also show binned
means and 95% confidence intervals for the mean. The shaded interval
includes the region within one within-event standard deviation (ϕ) of the
event-corrected median model. Panels (a) and (c) show the models in epicentral
distance space, whereas (b) and (d) show the models in hypocentral distance
space. The color version of this figure is available only in the electronic edition.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Event term trends against predictive variables. (a) Event term trends
against magnitude, separated by magnitude type: moment magnitude (Mw,
in blue) and local magnitude (ML, in red). Binned means for the combined
distribution are shown as white filled circles. (b) Event term distribution as a
histogram. The mean event term for Mw (blue) and ML (red) is labeled in the
legend. Panels (c)–(f) show event term trends with depth before and after
depth scaling adjustment. (c) Scatter plot of event terms without Zhyp

scaling. The best-fitting linear trend derived via least-squares fitting is
shown as an orange line. Binned means and their standard errors are also
shown, as filled white circles with error bars. (d) Histogram of event terms
from the model without depth scaling. (e) The same as panel (c), but for the
final model including depth scaling. (f) The same as panel (d), but for the
final model including depth scaling. The color version of this figure is
available only in the electronic edition.
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by Atkinson (2015) in their small-magnitude GMM, which also
used Rhyp as the distance metric. This offers additional evidence
for MyShake data being most strongly influenced by these short
periods, owing to its sampling of low-rise residential structures.

In Figure 8, we also observe a lack of a trend of the residuals
against VS30. VS30 is thought to be a good predictor of site
velocity structure (Boore et al., 2011), which should in turn
govern site response. It has long been the variable of choice
for parametrizing linear site amplification in free-field GMMs.
However, a lack of trend of within-event residuals with VS30

suggests that MyShake accelerations do not scale with VS30.
Fitting an alternative version of our model (see Table S3) that
includes a VS30-based linear site term based on Seyhan and
Stewart (2014), yields an extremely weak linear site scaling
coefficient of −0.100, whereas similarly parametrized free-field
GMMs find an equivalent coefficient of around −0.5 to 0.6 for
SA at 0.1–0.3 s. It is possible that the extremely narrow range of

VS30 values in our dataset, as illustrated by Fig. 4c, is not
enough to resolve any VS30 scaling. We do, however, observe
the lack of scaling of MMI within-event residuals with VS30

observed by Allen et al. (2012) when deriving their
Intensity Prediction Equation. Their observation was the
strongest for low intensities, using a dataset with a very similar
VS30 distribution to ours.

Comparison to free-field models
We next compare our MyShake GMM with free-field NGA-
West2 models for a number of short-period ground-motion

(a)

(b)

(c)

Figure 8. Within-event residuals (δWij) from the final model, plotted against
predictive variables: (a) epicentral distance, (b) hypocentral distance, and
(c) time-averaged shear-wave velocity in the top 30 m (VS30). All panels are
accompanied by a histogram of within-event residuals. The color version of
this figure is available only in the electronic edition.
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metrics to gain a better insight into the factors that affect
recorded MyShake accelerations. Figure 9 shows a comparison
of MyShake GMM against the ASK14 and BSSA14 NGA-
West2 GMMs for PGA and SA at 0.1–0.3 s. We evaluate
the free-field models for VS30 � 320 m=s to match the median
VS30 of the smartphone dataset, set all basin and style-of-fault-
ing terms to zero, and correct RotD50 predictions to the maxi-
mum of two horizontals using the ratios of Boore and Kishida
(2016). We also quantified the mean differences in natural log
units between the MyShake models and the geometric mean of
the two NGA-West2 models evaluated for the four IMs.

We observe that in terms of absolute predicted amplitude,
MyShake GMM median predictions are visually the closest to
SA at 0.1 and 0.2 s. The mean differences, averaged across mag-
nitudes, are 0.29 and 0.21 natural log units (i.e., the MyShake
predictions at SA 0.1 and 0.2 s were 1.34 and 1.23 larger, respec-
tively). The largest absolute differences are observed with respect
to the median PGA predictions. When averaged across magni-
tudes, the MyShake predicted acceleration is 3.0 times (1.11
natural log units) larger than the geometric mean of the two
free-field PGA predictions, which is in line with the 3.1 median

scale factor for MyShake acceleration with respect to observed
PGA reported by Patel and Allen (2022). For SA(0.3 s), the
mean difference is 0.63 natural log units (MyShake 1.88 times
larger), also in line with Patel and Allen (2022).

The largest differences are observed for magnitude 3.0 (i.e.,
the smallest earthquakes considered by our model). Across the
four IMs, MyShake predictions are on average 4.52 times larger
(1.51 natural log units), with the largest differences for PGA, at
7.67 times (2.04 natural log units). We speculate that these
large-scale factors might be due to smaller earthquakes con-
taining high-frequency radiation (≥10 Hz), with frequencies

(a) (b)

(c) (d)

Figure 9. Comparison of the MyShake model against the Abrahamson et al.
(2014; hereafter, ASK14) and Boore et al. (2014; hereafter, BSSA14) NGA-
West2 free-field models. We plot the models for four intensity measures
(IMs): (a) PGA, (b) spectral acceleration (SA) at 0.1 s, (c) SA at 0.2 s, and
(d) SA at 0.3 s, against epicentral distance. We evaluate ASK14, BSSA14,
and MyShake GMM for a VS30 � 320 m=s and a depth of 8 km forM 3.0,
4.0, and 5.0. The MyShake model is plotted as a solid line, ASK14 is plotted
as a dotted line, whereas BSSA14 is plotted as a dashed line. The color
version of this figure is available only in the electronic edition.
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matching those of nonstructural elements holding the phones
(e.g., desks and tables), causing resonances and significant
amplification at high frequencies.

Overall, this comparison exercise with free-field models
confirms a recurring observation in this work about how
MyShake accelerations are best correlated with the free-field
short-period SAs. It also confirms our findings in the
Comparison of Smartphone and Free-Field Observations sec-
tion and those of Patel and Allen (2022). Using median models,
which by definition fit the median trends in the data, and aver-
aging differences in logarithmic space across magnitudes, we
reproduce the median scale factors of Patel and Allen (2022);
yet we also observe a strong magnitude dependence of these
scale factors, as we reported earlier in this article. We also
observe that the geometrical spreading term in MyShake-
GMM is similar to that in the free-field models, as we have
previously seen.

CORRELATION OF MYSHAKE AND FREE-FIELD
RESIDUALS
Finally, we directly probe the predictive power of MyShake
smartphone data for free-field ground motion using the cor-
relation of residuals. The residuals with respect to a predictive
model capture repeatable between- and within-event effects,
and they can be thought of as having sensitivity to the same
features of ground motion when residuals for two distinct
intensity metrics are highly correlated. The correlation of
residuals from collocated observations of metrics sampling dif-
ferent frequencies (inter-frequency correlation) as well as the
correlation of residuals at different locations for metrics at one
frequency (spatial correlation) are key aspects of the ground-
motion spatial interpolation scheme used in ShakeMap
(Worden et al., 2018; Engler et al., 2022). At locations where
a desired output metric is not directly observed, it is inferred
from an observation of a correlated metric in frequency space
(e.g., inferring PGA from an observation of SA at 0.5 s). To
produce a spatially continuous grid of ground-motion predic-
tions, ShakeMap uses a spatial cross-correlation model for
within-event residuals (Loth and Baker, 2013) to adjust median
predictions from a GMM based on ground-motion observa-
tions. The spatial correlation of systematic effects is also central
to producing next-generation nonergodic GMMs that rely on
the variable coefficient model approach to model the spatially
variable coefficients and their epistemic uncertainty (e.g.,
Kuehn and Abrahamson, 2020; Lavrentiadis et al., 2022).

The correlation of total residuals must be assessed in two
steps, as the total residual, δij, consists of within-event resid-
uals, δW , and between-event residuals, δB, which are independ-
ently distributed and assumed to be uncorrelated (Goda and
Hong, 2008). The correlation coefficient, ρtot, of the total resid-
uals between two intensity metrics, T1 and T2 (which could be
SAs at two distinct periods, or PGA, PGV) as a function of
separation distance, h, is given as

ρtot�T1,T2,h� � ρδB�T1,T2�
τ1τ2
σ1σ2

� ρδW �T1,T2,h�
ϕ1ϕ2
σ1σ2

, �5�

in which ρδB�T1,T2� is the correlation coefficient of between-

event residuals for the metrics T1 and T2, ρδW �T1,T2,h� is the
correlation coefficient of within-event residuals for the metrics
T1 and T2 as a function of the separation distance h, and σ, τ,
and ϕ are as previously defined.

In our case, T1 represents MyShake GMM residuals, and T2

represents a free-field metric. To run the correlation analysis,
we evaluate free-field residuals for SA at 0.1, 1.0, and 3.0 s, as
well as PGA and PGV, using observations from ShakeMap
against equally weighted predictions from four NGA-West2
active crustal GMMs (ASK14; BSSA14; CB14; CY14), as in
the Comparison of Smartphone and Free-Field Observations
section. We partition residuals into within- and between-event
residuals using a mixed-effects regression. Free-field between-
event residuals (event terms) are formed using only the data at
Rhyp ≤ 50 km to avoid mapping any path term misfits into the
inferred event terms, as suggested by Baltay et al. (2020). Any
constant bias terms found by the mixed-effects regression for
the free-field event terms are added to the event terms reported
by the regression. MyShake residuals are taken from our model
regression.

We present scatter plots of MyShake versus free-field event
terms, as well as event term correlation coefficients (ρδB), evalu-
ated using the Pearson correlation coefficient, in Figure 10. Even
though we did not filter the events for the number of records in
our initial regression, we present here only event terms with three
or more smartphone records, because these are more reliably
constrained (correlations with all events are shown in Fig. S5).
We find positive correlations significant at the 5% level for PGA
and PGV, with Pearson correlation coefficients of 0.66–0.67. For
SA at 0.3 s, the correlation remains significant and stands at 0.58.
The lowest correlation is seen for SA at 1.0 s at ρδB � 0:50.

The presence of positive correlations between MyShake and
free-field event terms and the reductions when considering
longer periods are unsurprising in the light of observations
already covered in this article. In our dataset, MyShake records
predominantly sample low-rise, short-period fundamental
mode buildings. Recorded smartphone accelerations most
strongly track high frequencies, which are preferentially excited
by small-to-moderate (M 3–5) magnitude events with corner
frequencies above 1 Hz (1 s) (assuming they follow Brune-type
spectra as in fig. 3 of Baltay and Hanks, 2014).

The variation with distance of correlation coefficients
between MyShake within-event residuals with those for free-
field PGA, PGV, and SA at 0.3, 1.0, and 3.0 s, ρδW �h�, respec-
tively, is shown in Figure 11. We evaluate this correlation by
identifying all possible MyShake-free field observation pairs
and calculating the Pearson correlation coefficient for data
pairs for a range of distance bins. We use a smaller bin width
at smaller distances to quantify the short-distance correlation
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more finely. The smallest separation-distance bin of 0–0.5 km
contains 25 observations (Fig. 11a). We observe that the cor-
relation predictably falls off with distance, reaching a plateau
that is statistically indistinguishable from zero at the 5% level at
around 15 km distance (correlations also become nonsignifi-
cant at this distance). PGA and PGV show an almost identical
correlation, which is higher than for SA(0.3 s). Most signifi-
cantly, the correlation at very short separation distances
(<1 km), which is a proxy for the correlation of collocated

MyShake and free-field obser-
vations, peaks at 0.38 for
SA(0.3 s) and 0.46 for PGA
and PGV, indicating good pre-
dictive power of MyShake data
for these free-field metrics. At
these small separation distan-
ces, the correlation for
SA(1.0 s) and SA(3.0 s) is not
significant at the 5% and
should not be overinterpreted.

The correlation of MyShake
and free-field total residuals,
ρtot, which is expressed as an
average of the correlation coef-
ficients of between- and within-
event residuals weighted by the
standard deviation ratios (equa-
tion 5), will be mainly governed
by the correlation of the within-
event residuals, as τ < ϕ
(Carlton and Abrahamson,
2014). The correlation of total
residuals at small separation
distances is a reasonable proxy
for the correlation at zero sepa-
ration distance (i.e., collocated
observations), which in turn is
a measure of the predictive
power of MyShake data for
free-field ground motion.
Given that the short-distance
correlation between MyShake
and free-field PGA, PGV, and
SA(0.3 s) δW is around 0.4,
we can conclude that the corre-
lation of total residuals is also
around 0.4.

SUMMARY AND
DISCUSSION
We compile the first-ever con-
sistently processed database
of earthquake shaking records

from smartphone accelerometers, MyShake-GMDB, using
the infrastructure for waveform collection provided by the
MyShake app and utilizing the synergy with the USGS
ShakeAlert system on the U.S. West Coast. Our database is
only an order of magnitude smaller (1619 vs. 20,000) than
the gold-standard ground-motion modeling NGA-West2 data-
base for active crustal regions, despite drawing data from 4 yr
(2019–2023), as opposed to the almost 80-yr coverage (1933–
2011) of NGA-West2. MyShake-GMDB is complementary to

(a) (b)

(c)

(e)

(d)

Figure 10. Comparison of MyShake event terms against free-field event terms for five IMs. We only plot event terms
that were constrained by three or more records (24 of 92 events). The five panels plot the MyShake event term
against the free-field event term: (a) PGA, (b) peak ground velocity (PGV), (c) SA at 0.3 s, (d) SA at 1.0 s, and (e) SA
at 3.0 s. In each panel, we also observe the Pearson correlation coefficient for the two datasets, along with
bootstrapped 95% confidence intervals and the p-value. The orange lines indicate the best linear fit, whereas the
one-to-one line is shown in black. The correlation of event terms for all events, regardless of the number of records,
is shown in Figure S5. The color version of this figure is available only in the electronic edition.
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NGA-West2 data coverage, providing improved data coverage
at short source-to-site distances for small-to-moderate magni-
tude effects. This could help to address significant epistemic
uncertainty in modeling geometric attenuation at small
distances for small-magnitude events in current GMMs
(e.g., Atkinson, 2015).

We apply ground-motion modeling techniques to this smart-
phone data to examine its potential utility for modeling the free
field, given that smartphone data recorded inside buildings is
not free-field data. We first illustrate how MyShake peak accel-
erations should not be treated as equivalent to free-field PGA,
given magnitude- and distance-dependent differences between
median predicted amplitudes from free-field GMMs and

MyShake data. We develop a
GMM for the peak horizontal
acceleration recorded by
MyShake phones for M 3.0–
5.5 and Repi ≤ 50 km using
conventional ground-motion
modeling techniques, and we
use it to further compare
MyShake to free-field data.

We find that our median
MyShake GMM gives extremely
similar geometric attenuation
coefficients to those for free-
field short-period metrics (SA
0.1–0.3 s). We find this geomet-
ric decay to be stronger than
canonical R−1 decay for body
waves. Visual comparison with
free-field GMMs further illus-
trates the comparable geometric
attenuation trends. It also illus-
trates that median MyShake
peak accelerations most closely
resemble median GMM-
predicted SA at 0.1–0.2 s,
perhaps highlighting an out-
sized sampling of one-story
structures in MyShake-GMDB.

Our median MyShake
GMM shows comparable per-
formance to free-field GMMs
in terms of the aleatory variabil-
ity (model standard deviation),
even though MyShake observa-
tions carry additional aleatory
variability owing to unmodeled
building effects, in addition to
free-field effects (e.g., source,
site, and path effects). Because
MyShake-GMDB is rather

small compared to the NGA-West2 database, it could be over-
estimating or underestimating true variability. This can be fur-
ther investigated by incorporating more data and trying to
systematically investigate building effects by incorporating
building information (e.g., Sun et al., 2022). Although the
required detailed building information is not currently readily
available withMyShake records, future versions of the app could
provide users with an option to volunteer this information to
enable further investigation into the effects of building typology.

Using residual correlation analysis, we show that MyShake
data have predictive power for estimating the free-field ground
motion. As expected from our GMM comparisons, MyShake
within-event residuals, which capture path and site variability,

(a)

(b)

Figure 11. Correlation of MyShake within-event residuals against free-field within-event for PGA, PGV, and SA at
0.3, 1.0, and 3.0 s in different distance bins. (a) Correlation coefficients for the five IMs in different distance bins.
For each bin and each IM, we plot the Pearson correlation coefficient with MyShake within-event residuals and
bootstrapped 95% confidence intervals as error bars. (b) The number of observation pairs (MyShake paired with
free field) for each distance bin used. The color version of this figure is available only in the electronic edition.
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correlate most strongly with short-period metrics, like PGA and
SA at 0.3 s. Recovered correlation coefficients for within-event
residuals at close (<1 km) stand at 0.4, implying correlation coef-
ficients for total residuals at 0.4. Although this number is based
on a rather limited dataset, it lines up well with the 0.4 corre-
lation coefficient between MMI-based felt intensity and PGA or
PGV residuals, as reported by Gallahue and Abrahamson
(2023). MyShake phones, much like humans reporting their
experience of felt intensity, are located mostly within buildings.
It is therefore not unreasonable to infer that smartphone-
recorded accelerations, viewed through the same building “fil-
ter” as felt intensity observations, would exhibit similar depend-
encies on key ground-motion predictive variables. The lack of a
scaling of MyShake peak acceleration with VS30, just like MMI
data, as reported by Allen et al. (2012), further supports this
interpretation. MMI data may not be of the same quality as
instrumental ground-motion data, but even as an imperfect pre-
dictor of free-field ground motion, they have great value due to
the denser sampling compared to seismic stations (Hough, 2000;
Quitoriano and Wald, 2020). If dense smartphone data is sim-
ilarly useful to MMI data as a predictor of free-field ground
motion, its addition to ground-motion modeling routines could
only prove beneficial.

Using MyShake GMM to form residuals as a means of map-
ping systematic effects, combined with knowledge of the
strength of MyShake data as a predictor of free-field ground
motion, opens up avenues for further investigation into the
use of MyShake data in many subfields of ground-motion
modeling. As the field of ground-motion modeling embraces
nonergodic, spatially variable GMM, MyShake data could pro-
vide a way to validate estimated nonergodic effects by virtue of
sampling particular paths and sites more continuously com-
pared to free-field data. In terms of site response studies, spa-
tially aggregated dense MyShake within-event residuals could
be treated using similar approaches to those outlined by Parker
and Baltay (2022) for constructing map-based site response
models and then used to detect site effects at finer spatial res-
olution than what can be detected by stations spaced 5–10 km
apart. Given the ShakeAlert-MyShake synergy, these data
could also be used to validate ShakeAlert ground-motion pre-
dictions at a finer resolution. In addition, dense smartphone
data could prove useful for the USGS ShakeMap ground-
motion geospatial interpolation software. More data is key
to ShakeMap ground-motion estimates that better fit observed
ground motion and have a lower estimation (statistical) uncer-
tainty (Wald et al., 2022). Attaching an appropriate level of
uncertainty to the smartphone data can make for a relatively
straightforward incorporation into the ShakeMap multivariate
normal interpolation scheme (Quitoriano and Wald, 2020;
Engler et al., 2022), providing additional data for conditioning
outputs for short-period metrics. In addition, further utiliza-
tion of MyShake waveforms in conjunction with MyShake’s
capability to harvest felt reports (Kong et al., 2023) could

advance our understanding of the levels of instrumental
ground shaking at the location where the user reports their
experience of shaking—an advance that has previously been
labeled as the “holy grail of human-centric ground-motion
seismology” (Quitoriano and Wald, 2020).

Furthermore, in this work we have just used MyShake peak
acceleration, whereas we archive full waveforms fromMyShake
devices. Future work could focus on trying to understand what
the MyShake waveform could contribute, both in terms of
other peak metrics (e.g., peak MyShake velocity), duration
metrics, and frequency-domain metrics. Frequency-domain
metrics could provide a more direct link to current GMM prac-
tice for engineering applications, which favors modeling the
Fourier amplitude spectrum and converting to SA rather than
directly modeling SA. Furthermore, frequency domain studies
could allow us to spatially probe the relative importance of
building versus free-field site effects via the identification of
any spatially repeatable resonant peaks in waveforms, as well
as better understand frequencies affecting human experience of
ground motion (e.g., Sokolov and Chernov, 1998).

Operationally, there are a number of avenues to pursue to
maximize the benefit of MyShake data to ground-motion mod-
eling routines. The addition of more data in the magnitude–dis-
tance ranges covered by the current MyShake-GMDB would
help make MyShake-GMM more robust and could potentially
allow for the development of a nonergodic smartphone-based
model. Software improvements on the app side could also
increase the number of waveforms harvested in instances in
which MyShake pushes massive numbers of alert messages from
ShakeAlert to the public. Near-source, large-magnitude smart-
phone data have proven elusive thus far, and the ability of smart-
phones to capture very high-intensity groundmotion remains to
be seen, given the potential for clipping (Patel et al., 2023).
However, leveraging both advances in automated ground-
motion processing software, like the USGS gmprocess software
(Thompson et al., 2024), and machine learning techniques, a
pipeline can be developed that screens for data quality with less
need for manual input. This could enable the regular piping of
smartphone data into near-real-time systems such as ShakeMap.
It could also enable the streaming of smartphone data into large
GMDBs to facilitate investigating systematic effects captured by
dense smartphone recordings.

DATA AND RESOURCES
We compiled event data by querying the Advanced National Seismic
System (ANSS) Comprehensive Earthquake Catalog (ComCat)
available at https://earthquake.usgs.gov/data/comcat/ (last accessed
February 2023), using the Python package libcomcat (Hearne and
Schovanec, 2022). Next Generation Attenuation-West2 (NGA-
West2) ground-motion models (GMMs) were implemented in
Python using the OpenQuake engine (Pagani et al., 2014). Model fit-
ting was performed using the lme4 R package (Bates et al., 2015),
implemented via the Python package pymer4 (Jolly, 2018).
Smartphone waveforms were processed in part using the ObsPy
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Python package (Krischer et al., 2015). Figures were compiled using
the Matplotlib (Hunter, 2007) and CartoPy (Met Office, 2015) pack-
ages in Python. Maps use free vector and raster map data available at
naturalearthdata.com (last accessed August 2024), as well as topo-
graphic data from the General Bathymetric Chart of the Oceans
(GEBCO; GEBCO Compilation Group, 2024). The supplemental
material includes five supplemental figures and three supplemental
tables. Figure S1 shows trends of total residuals of MyShake and
free-field data with respect to predictions from free-field models
for spectral acceleration (SA) at 0.3 s. Figure S2 shows the number
of unique records per event used in deriving MyShake GMM.
Figure S3 is similar to Figure 7 but shows plots of event terms for
all considered events. Figure S4 shows the relationship between-
and within-event residuals of the MyShake GMM with hypocentral
distance, binned by magnitude. Figure S5 is similar to Figure 10
but shows correlations of event terms for all events sampled by smart-
phone waveforms. Table S1 shows the epicentral distance thresholds
used to associate smartphone waveforms with cataloged earthquakes.
Table S2 shows the model coefficients and estimation errors associ-
ated with the final MyShake GMM. Table S3 is similar to Table S2, but
instead shows coefficients for an alternative smartphone GMM that
includes a linear site scaling term. The MyShake ground-motion data-
base (GMDB) is available as a supplementary dataset via Zenodo (doi:
10.5281/zenodo.13288173). It contains the MyShake ground-motion
record flatfile (containing data from 1619 high-quality waveforms
harvested from smartphones globally), the associated event table with
source information from the U.S. Geological Survey (USGS) ComCat,
and a spreadsheet with header definitions. The flatfile contains the
extracted MyShake peak accelerations, record locations, computed
distance metrics, and the VS30 and surface geologic unit at the obser-
vation location.
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