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ABSTRACT
Detecting offshore earthquakes in real time is challenging for traditional land-based seismic
networks due to insufficient station coverage. Application of distributed acoustic sensing
(DAS) to submarine cables has the potential to extend the reach of seismic networks
and thereby improve real-time earthquake detection and earthquake early warning
(EEW). We present a complete workflow of a modified point-source EEW algorithm, which
includes a machine-learning-based model for P- and S-wave phase picking, a grid-search
location method, and a locally calibrated empirical magnitude estimation equation.
Examples are shown with offshore earthquakes from the SeaFOAM DAS project using a
52-km-long submarine cable in Monterey Bay, California, demonstrating the robustness
of the proposedworkflow.When comparing to the current onshore network, we can expect
up to 6 s additional warning time for earthquakes in the offshore San Gregorio fault zone,
representing a substantial improvement to the existing ShakeAlert EEW system.

KEY POINTS
• A workflow is developed using a seafloor distributed

acoustic sensing (DAS) array for earthquake early warning.
• Examples of earthquake detection are shown with the

DAS data from offshore events in Monterey Bay, California.

• Estimation of additional warning time up to 6 s can be
gained for the offshore San Gregorio fault zone.

Supplemental Material

INTRODUCTION
Earthquake early warning (EEW), which provides seconds
to tens of seconds of warning for potentially damaging
earthquakes, has been developed and is operational in many
regions worldwide (Allen and Melgar, 2019). Effective EEW
systems depend heavily on dense seismic networks. However,
the greatest earthquake risks are often found in offshore
regions, which lie beyond the coverage of most land-based
seismic networks. It has always been a challenge to detect
and characterize events that occur outside of the network in
EEW systems (Netanel et al., 2021; Ziv et al., 2024). Lack of
near-source triggers leads to longer detection delays. Lack of
azimuthal coverage leads to poorly constrained earthquake
locations, which consequently introduces errors in the magni-
tude estimation. For example, Williamson et al. (2023) found
that insufficient network coverage is responsible for inaccurate
characterization of offshore events in the Mendocino triple

junction. Some earthquake-prone countries adjacent to
subduction zones have made significant efforts to increase
offshore seismic observations by building cabled ocean-bottom
seismometer (OBS) networks such as S-Net in Japan
(Kanazawa et al., 2016). The costs of real-time OBS networks
are very high, and the network is difficult to maintain.

Recent advances in distributed acoustic sensing (DAS) reveal
the optical fiber sensing technology’s potential in ocean-bottom
seismic monitoring. DAS could provide axial strain measure-
ments along fiber-optic cables by sensing optoelectronic signals,
through an interrogator unit connected to one end of the cable
(Zhan, 2020; Lindsey and Martin, 2021). Applying DAS to
existing submarine cables has been demonstrated to be effective
in detecting earthquakes and ambient seismic field and oceanic
signals (Lindsey et al., 2019; Sladen et al., 2019; Cheng et al.,
2021; Lior, Sladen, et al., 2021; Matsumoto et al., 2021;
Williams et al., 2023; Xiao et al., 2024). Many studies have
explored the feasibility of using DAS data for real-time
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earthquake detection (Farghal et al., 2022). For example, Yin,
Soto, et al. (2023) showed examples directly using DAS data
offshore Chile to detect nearby events and its potential benefits
for an EEW system; Lior et al. (2023) explored the potential
using ground-motion data converted fromDAS data to estimate
earthquake magnitude.

During the pilot study by Lindsey et al. (2019), DAS was
applied to a submarine cable in the Monterey Accelerated
Research System (MARS, we will refer to the cable as
MARS cable in this article), a cabled observatory owned by
Monterey Bay Aquarium Research Institute (MBARI). In
2022, we started the SeaFOAM (The Seafloor Fiber-Optic
Array in Monterey Bay) project (Romanowicz et al., 2023)
using the same MARS cable funded by the National Science
Foundation (NSF). After the originally proposed one year
duration, the project was extended to be a permanent deploy-
ment with support from the CalOES (California Governor’s
Office of Emergency Services). Considering the offshore seis-
mic hazards and the limitations of on-land seismic networks
discussed earlier, we aim to use real-time DAS data to enhance
EEW and monitor the seismic activity in this region, with a
special focus on offshore faults.

In California, several offshore faults have hosted large histori-
cal earthquakes and have the potential for big earthquakes in
the future (Field et al., 2015). Paleoseismology, seafloor geomor-
phology, multibeam surveys, and active-source reflection seis-
mology are most commonly used to map and study these
offshore faults, which are generally less constrained compared
to their on-land neighbors. The earthquake hazards associated
with these offshore faults are not negligible, extending all the
way from the Mendocino triple junction in Northern California
down to offshore Los Angeles. The 1906 San Francisco
earthquake is believed to have originated from the offshore
section of the San Andreas fault (SAF; Lomax, 2005). The
San Gregorio fault (SGF) is an offshore fault extending from
the southern reaches of Monterey Bay to Bolinas Bay, northwest
of San Francisco, where it intersects with the SAF (Graham and
Dickinson, 1978). Paleoseismic evidence from trenches on the
SGF’s intersection with the San Francisco Peninsula suggests
it has experienced an M 7+ event after A.D. 1270 (Simpson
et al., 1997). More recently, Johnson et al. (2018) discussed
the potential seismic hazards of a connected San Gregorio-
Hosgri fault system, which could be ruptured during one single
event through the Big Sur Bend. The estimated earthquake mag-
nitude in this scenario is M 7.8, and the strong shaking could
also trigger coastal landslides and tsunamis. The largest earth-
quake ever recorded by modern instruments on the SGF was
M 6.4 in 1926, located inside the Monterey Bay according to
the International Seismological Centre-Global Earthquake
Model (ISC-GEM) Catalog (Di Giacomo et al., 2018).

Some significant historical earthquakes with magnitudes
larger than 5 are shown in Figure 1, including the 1989 M 6.9
Loma Prieta earthquake on the SAF north of Monterey Bay. The

SGF is still geologically active with a modern slip rate less than
10 mm/yr (Wills et al., 2007). A few studies reveal complex sub-
fault systems in the Monterey Bay, including potentially
unmapped faults found by Lindsey et al. (2019). One of the first
broadband OBSs named Monterey Ocean Bottom Broadband
(MOBB) observatory was deployed in Monterey Bay and was
contributing data to the Berkeley seismic network from 2003
(Romanowicz et al., 2003). MOBB contributed to the detection
of many offshore events inside Monterey Bay as the closest sta-
tion, before it was unfortunately shut down by a trawling event
in 2016. Seismic hazard models rely on seismicity, slip rate, and
other information to forecast earthquakes on faults. Therefore,
more seismic observations offshore could improve seismic haz-
ard forecasting on the SGF.

Given the historical seismicity and recent research on the
current SGF, it is evident that the offshore seismic hazard
poses a notable concern. However, there are significantly
fewer instruments available to provide timely detection for
EEW in this offshore region, especially when comparing to
the density of stations on land. Figure 1 shows all the seismic
stations that are currently contributing to the ShakeAlert
(Kohler et al., 2020) EEW system for the west coast of the
United States. Since the public rollout, ShakeAlert has issued
numerous widely distributed public alerts in California (Lux
et al., 2024). One of the main EEW algorithms featured in
ShakeAlert is EPIC (Earthquake Point-source Integrated
Code), which is a point-source EEW algorithm that detects
earthquakes using P-wave arrivals close to the epicenter to
locate the earthquake and estimate the magnitude, based
on the point-source assumption and local velocity models
(Chung et al., 2019). EPIC has been intensively evaluated
and verified as a timely and robust EEW algorithm. The
operational principles of EPIC necessitate a dense network
coverage over the region of interest, thus integrating DAS
data to EPIC could help improve EEW for offshore events.
In this article, we present a complete workflow to utilize
DAS data from the SeaFOAM project for earthquake detec-
tion in real time for the purpose of EEW, demonstrating
procedures including seismic arrival triggering, earthquake
location, and magnitude estimation.

SeaFOAM DAS DATA
An OptaSense DAS interrogator (model QuantX) has been
connected to the 52-km-long MARS cable since the start of
SeaFOAM in July 2022. As of 16 November 2024, continuous
data have been recorded for 840 days, with a data completeness
rate of 98.7%. Data gaps are due to a few interruptions from
power outages and maintenance. Details about the data acquis-
ition process can be found in Romanowicz et al. (2023). Raw
data were collected with a 200 Hz sampling rate, 20.4 m gauge
length, and 5.1 m channel spacing, which can be proportionally
converted to strain. We obtained 10,245 channels with this
configuration.
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Getting accurate location information of existing DAS
cables has always been a challenge for the seismology commu-
nity. When the information is not provided by the owner,
people usually interpolate locations of control points along
the cable obtained by “tap” test or moving vehicles (Biondi
et al., 2023) to get the location of each DAS channel. For sub-
marine cables, the lack of accessibility makes the channel locat-
ing task more difficult. Collaboration with MBARI allows us to
take advantage of their cable inspection report for detailed
cable conditions. MBARI conducts repeated surveys on the
MARS cable every five years to inspect the cable’s condition
and potential environmental effects, using a Remote Operating
Vehicle (ROV). The ROV records high-quality video footage at
control points from which we can observe the cable’s substrate
composition, coupling condition, and forced movement. The
most recent survey (Kuhnz et al., 2020) was conducted in 2020.
The report includes the cable’s burial condition, points of
suspension, and spans due to steep bathymetry. As shown
in Romanowicz et al. (2023), the background noise level of
the DAS channels along the cable correlates well with bathym-
etry and substrate composition.

Because we aim to develop methods using DAS arrays to
detect earthquakes, we first need a data set that contains
recorded earthquake waveforms. Our earthquake data set
preparation process follows that outlined by Zhu et al. (2023).
We cut 120-s-long waveforms containing the earthquake from
the continuous data using an approximate estimation of
P-wave arrival times for local U.S. Geological Survey (USGS)

Figure 1. Recent and historical seismicity near Monterey Bay, California. The
white line extending across the bay represents the Monterey Accelerated
Research System (MARS) cable used in this study. Circles represent
earthquake epicenters, with their sizes proportional to the magnitude. Red
circles are earthquakes of all magnitude during the SeaFOAM project (until
the draft of this article in April 2024) from the U.S. Geological Survey (USGS)
ComCat catalog. Gray circles are historical earthquakes with magnitude
larger than 5 from the International Seismological Centre-Global Earthquake
Model (ISC-GEM) Catalog. The green circles are two offshore earthquakes
later discussed in this study as examples of event detection using distributed
acoustic sensing (DAS). Black triangles represent seismic stations currently
used by the ShakeAlert system. The white triangle is the offshore station
MOBB. Fault lines are shown in black. The color version of this figure is
available only in the electronic edition.
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catalog events between August 2022 and April 2023. We pre-
serve the HDF5 data format and DAS acquisition parameters
such as gauge length and channel spacing from continuous
data. Then, we added reformatted metadata such as earthquake
source parameters, event ID, and start and end time. The esti-
mated first P-wave arrival at the DAS array is placed around
30 s into the data window. This resulted in 311 events with
good signal-to-noise ratios (SNR), which we will be using both
in the machine learning (ML) training process and magnitude
calibration process discussed later.

EARTHQUAKE DETECTION METHODS
A complete workflow for a point-source-based EEW system
includes detecting seismic arrivals (real-time phase picking),
earthquake location, magnitude estimation, ground-motion
prediction, and alert distribution, which should all be finished
in a sequential and timely fashion. The goal of the first three
steps is to obtain earthquake source parameters, which will be
the focus of this study. To facilitate integration to the existing
ShakeAlert EPIC algorithm in the future, while also exploring
the full potential of a dense DAS array, we developed an algo-
rithm that is consistent and compatible with EPIC workflow
(Chung et al., 2019).

Detecting seismic arrivals
Accurate detection of seismic arrivals is the first and an essen-
tial step of the workflow because it directly affects the following
processes of earthquake location (Bozzi et al., 2024) and
magnitude estimation. Traditional seismic arrival picking
methods based on single station data are not well suited for
DAS data for several limitations for a few reasons: (1) the dense
spatial information provided by the DAS array is underutilized;
(2) determining optimal parameters is challenging due to dif-
ferent background noise levels across a large number of chan-
nels; (3) methods that require three-component data are not
directly applicable. For example, short-term average/long-term
average method (Allen, 1982) may require fine-tuning for each
DAS channel to determine the best-window lengths and
thresholds, since strain or strain-rate data recorded by DAS
will amplify scatter waves, which will make picking P- and
S-wave arrivals challenging (Capdeville and Sladen, 2024).

Here, we applied an ML method for seismic phase picking.
The ML model was trained using a semi-supervised transfer-
learning approach based on PhaseNet-DAS (Zhu et al., 2023).
The original PhaseNet-DAS model has a U-net structure inher-
ited from PhaseNet (Zhu and Beroza, 2019), which is a single-
station-based seismic phase-picking model. PhaseNet-DAS was
modified to take a 2D input (time and space domain) of DAS
data and was trained using a data set consisting of onshore
DAS data.

Directly applying the original model to events from the
SeaFOAM data set gave suboptimal results for some parts of
the cable. The issues included picking phases discontinuously

across the DAS array and misidentification of phase types.
Because of the “uninterpretable” nature of neural networks
(LeCun et al., 2015), we cannot be certain of the exact causes,
but we can speculate on the reasons for the reduced performance:

1. DAS data are known to exhibit different background noise
levels because of its broadband observation ability (Lindsey
et al., 2020) and variability in cable coupling conditions
(Reinsch et al., 2017; Hudson et al., 2024). Submarine
DAS arrays can record both seismic and oceanic waves
(Lindsey et al., 2019; Sladen et al., 2019; Lior, Sladen,
et al., 2021); therefore, they must be explored separately from
on-land DAS arrays. One can easily see the differences when
looking at raw recordings and power spectral density analy-
sis. Supervised or semi-supervised MLmodels rely heavily on
training data and may not generalize well to new data sets. In
this case, it is reasonable that the original PhaseNet-DAS
model, trained with onshore data, does not work as well
for submarine DAS data.

2. Interrogators may have different measuring techniques.
Depending on the needs, different choices for parameters
such as gauge length, channel spacing, and the choice
between strain or strain-rate outputs are made for individ-
ual DAS deployments. An obvious consequence is the
amplification of high-frequency signals in strain-rate data
than strain data. Currently, the community is still working
toward standards for DAS data acquisition (Hui Lai et al.,
2024). The original PhaseNet-DAS model was trained on
100 Hz strain-rate data with ∼10 m channel spacing.
The SeaFOAM project operates with ∼5 m channel spacing
to record 200 Hz strain data. The different sampling choices
may affect the “sense” of time and space of the ML model
because the convolution kernels may be trained to interpret
DAS data at a certain scale.

Given these concerns, and the tests on real SeaFOAM data,
we decided that the original PhaseNet-DAS model was not
suitable for direct application to the SeaFOAM data set. We
instead took a transfer-learning approach that is commonly
used in the ML community to get an improved model starting
with a more generic original model. The new model preserves
the main features from the original model but performs better
with the DAS data collected in submarine environments.

Transfer learning of PhaseNet-DAS model
The semi-supervised transfer-learning approach has a work-
flow similar to the original PhaseNet-DAS model (Fig. 2).

1. We first applied the original model to the earthquake data
set from SeaFOAM (as described in the SeaFOAM DAS
Data section) to prepare labels for the training process.
The labels mark DAS data points as P-, S-wave arrivals,
or noise. Then, we trained a new model using data with
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SeaFOAM DAS configuration (200 Hz, ∼5 m). To generate
labels for training, we needed to apply the original model
with the original configuration (i.e., 100 Hz, ∼10 m).
Therefore, we initially applied decimation to the data both
in time and space domain to roughly match the 100 Hz,
∼10 m sampling rates of the data that the original model
was trained on. After we applied the original model to
the decimated data, we obtained noisy pseudo labels.
They are called “noisy pseudo labels,” which also contain
false picks for P and S arrivals.

2. The noisy pseudo labels generated in step 1 were filtered out
using an earthquake association algorithm, the Gaussian
Mixture Model Association (GaMMA) (Zhu et al., 2022).
GaMMA was designed to handle a large number of picks,
for example from ML phase pickers. It serves as a filter to
exclude false labels for outputs from the original PhaseNet-
DAS model. We used a constant P-wave velocity of
5.6 km/s, S-wave velocity of 3.2 km/s in GaMMA to associate
the picks. The choice of P-wave velocity is an average appar-
ent velocity for some local earthquakes, which were recorded
on traditional seismic stationMOBB near the end of the cable.
The associated picks were continuous along portions of the
cable with reasonable seismic wave speeds, whereas scattered
false picks with large offsets were filtered out.

3. Manual inspection was then performed on the picks asso-
ciated by GaMMA before they were used as labels in train-
ing. As aforementioned, the filtering process by GaMMA
did not guarantee the associated picks were all correct
and had good SNR. Manual inspection in the first iteration
of this transfer learning approach was necessary for the

small data set used for transfer learning. We wanted to keep
only very good quality training data to tune the model with-
out making the training task too challenging at first. After
the first iteration, we could use the new model to repeat this
process where we could loosen the criteria to include more
picks as labels. Examples of final training data are shown in
Figure S1, available in the supplemental material to this
article. Although the labels were prepared on 100 Hz and
10 m data, we then used the SeaFOAM’s data without deci-
mation (200 Hz, 5 m) in the training process (Fig. S1). After
this step, we had 311 events with good P- and S-wave picks.

4. We split the prepared data set into a training and a testing
data set with a ratio of 8:2, which contains 248 and 63
events, respectively. Because most of the phase arrival labels
were generated on data with good SNR, and we also wanted
the new model to generalize to noisy data, similar data aug-
mentation methods (randomly flipping data along the spa-
tial axis, masking part of data, superimposing double events,
and stretching [resampling] along the temporal and spatial
axes) as used in Zhu et al. (2023) were applied to the train-
ing data set. In addition, we also randomly selected around
300 data segments containing only noise (120-s-long data

Figure 2. Transfer-learning workflow. The original PhaseNet-DAS model (Zhu
et al., 2023) is applied to new data from SeaFOAM to generate noisy pseudo
labels, which are then filtered by the association algorithm GaMMA (Zhu et al.,
2022) for training. It is optional to repeat this semisupervised process. The
details are explained in the Transfer learning of PhaseNet-DAS model section.
The color version of this figure is available only in the electronic edition.
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without any signals from earthquakes) from the period
August 2022 to April 2023. These noise segments were
randomly stacked (superimposed) with the training data
to enhance the training. A more detailed description of
these training processes can be found in the supplemental
material including loss during the training process (Figs. S2,
S3). The new model was trained for 100 epochs on two
Tesla T4 graphics processing units (GPUs) in Berkeley
Seismological Lab (BSL).

Comparison between the original PhaseNet-DAS
model and new models
Examples of phase-picking performance comparison between
the original PhaseNet-DAS model and new model are shown
in Figure 3. We can see the improvement in phase-picking con-
tinuity and accuracy, which is even more obvious when apply-
ing the model to data in moving windows to simulate a real-
time situation. To further evaluate the models trained using the
semi-supervised method, we need quantitative analysis of the
model performances. Just like for any other ML models for
seismic phase picking, ground-truth data are difficult to define
or obtain. People generally approach this problem by (1) com-
paring to manual phase picks, (2) comparing to theoretical
arrivals from a velocity model, and (3) comparing relative
arrival-time differences using cross correlation.

There are multiple challenges in the case of this data set.
Manual labels for DAS data are not realistic due to the large
data volume. The recorded earthquake wavefields in SeaFOAM
data are complicated. DAS is proven to be sensitive to small-
scale local heterogeneity (Singh et al., 2020; Capdeville and
Sladen, 2024), which will potentially lower the SNR for P-
and S-wave arrivals. We also have observed effects due to
underwater basin resonance (Lior et al., 2022) and scattered
waves from fault zones (Atterholt et al., 2022; Yang et al.,
2022), which might impair the detection of P- and S-wave
arrivals. Finally, it is difficult to calculate accurate theoretical
arrivals simply using a 1D velocity model. Because of these rea-
sons, the original PhaseNet-DAS model was evaluated using
the cross-correlation method. Here, we focus on a direct com-
parison between newmodels and the original model. We there-
fore defined metrics to evaluate a model’s phase detection
ability considering both the DAS array as a whole and each
channel individually. The metrics include numbers of events
that had more than 2000 P or S arrival picks (∼20% of all chan-
nels), numbers of events that were associated by GaMMA,
mean P or S phase scores (the quality metric assigned to each
pick by the ML model), average number of P or S arrivals per
event, and mean P-wave detection gap (sections along the cable
that did not have continuous picks). Detailed explanations can
be found in Tables S1 and S2. The new SeaFOAM-PhaseNet-
DAS performed better overall according to these metrics and
was used in the next steps.

Grid-search EEW earthquake location method
We used a grid-search method to find the earthquake location
with minimum P-arrival time misfit to theoretical arrival times
from a 1D seismic velocity model. The workflow steps were
as follows.

1. We used a local 1D velocity model for Monterey Bay and
nearby regions (Begnaud et al., 2000) to calculate theoretical
first P- and S-travel time from 0 to 300 km epicentral
distances for an earthquake depth of 6.5 km (average
earthquake depth in this region).

2. We discretized a rectangular search region centered around
the DAS array (36.25° N, 37.51° N, 121.24° W, 122.50° W)
with 0.02° grid spacing.

3. We calculated the theoretical arrival times for all DAS
channels from each grid point (representing all possible
earthquake locations in the grid search).

4. When the ML model outputs phase picks from the moving
window scrolling through the DAS data, we use the P-
arrival picks and the precalculated arrival times to evaluate
the misfit for all possible earthquake locations. When a
channel had both P- and S-arrival picks available, we also
calculated (S-P) time and compared to precalculated (S-P)
arrival times in the same way.

5. The misfits were weighted using different metrics and con-
verted into likelihoods. For the conversion, we calculate the
inverse of the misfit at each grid point, and the “likelihood”
is determined by normalizing this value against the total
sum of the inverse misfits across all grid points. The output
picks from the ML model include a quality metric that
ranges from 0 to 1 for each pick. The arrival-time misfit
at each available channel was multiplied by the inverse
of this quality metric. Then, this weighted misfit was con-
verted into a likelihood between 0 and 1. The resultant like-
lihood was then multiplied by the ratio of the number of
available channels to the number of total channels. The
weighted likelihood calculated for all P arrivals was finally
multiplied by likelihood from the (S-P) time when available.

6. If the event grid location with highest likelihood exceeded
a given threshold, the algorithm declares that an event is
detected at that location. As more information (higher
quality picks and larger numbers of picks) becomes
available over time, the likelihood distribution for each
sequential step is multiplied recursively. The location is
updated at each chosen timestep (every 0.16 s). The recur-
sive process ensures that the location does not solely rely
on the P- and S-arrival picks from a certain time window,
which has a finite length and may contain incomplete
wavefields in real time.

7. When the number of grid points with high likelihood (top
30th percentile) is less than 9, we assume the location result
has converged. To prevent low nonnormalized likelihood
from vanishing in the recursive multiplication, which might
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Figure 3. Performance comparison for the original PhaseNet-DAS model and
the SeaFOAM-PhaseNet-DAS model for an M 5.1 event. The machine
learning (ML) models are applied to 0.5 Hz high-pass filtered strain-rate
data in ∼10-s-long moving windows. (a) Results using the original model
and (b) new SeaFOAM model. Upper panels show snapshots of the picking
results for three time windows, whereas the lower panels show all the P and

S arrivals that were picked and the model scrolls through the input data. The
picks are shown in darker color for earlier windows to show the picking
performance when the arrivals first appear at the edge of the windows. Note
that later picks overlap with each other, so the most commonly picked
points will also appear darker. The color version of this figure is available
only in the electronic edition.
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cause problems in calculation, we rescaled the location
result by normalizing the highest likelihood to 1 to stabilize
the location process.

The principal concept underlying this method is the com-
parison of the moveout curve observed on the DAS array to
theoretical predictions from a 1D velocity model to constrain
the back azimuth. In addition, we use differential arrival time
between S and P phases (when available) to constrain the dis-
tance to the event. Using a 1D velocity model was straightfor-
ward to implement and we expect that theoretical arrival times
with a 1D velocity model would be accurate enough for EEW
purposes. Local velocity variation and scattering effects can be
observed in the data but they do not change the overall move-
out curve significantly across the DAS array. It should be noted
that the method does not search for origin time of the earth-
quake, which saves computational time (Yin, Soto, et al., 2023)
and focuses on relative arrival times to estimate event loca-
tions. To measure misfits between theoretical and observed
moveouts, we aligned the first P arrival detected among
observed DAS data to theoretical moveout data. The weighting
scheme in this method takes full advantage of the PhaseNet-
DAS model and dense array observation from DAS. The use
of number of picks and phase scores as weights reduces the effect
of low-quality picks from the ML model. The ratio of triggered
channels to total channels provides higher weights when more
channels have picks in the recursive location process. It also pre-
vents triggering only on some parts of the cable due to local
disturbances with fewer subsequent picks. Once we have an esti-
mated epicenter, we use the theoretical travel time from that
location to the DAS array to shift the arrival time observed
on each channel to get the earthquake origin time. The median
results from all channels will be used as the estimated earth-
quake origin time (Yin, Soto, et al., 2023). Finally, our approach
is principally similar to EPIC, which means it will be relatively
straightforward to integrate into EPIC in the future.

Location error estimation and sensitivity
We estimate the error in location, and explore the sensitivity of
a DAS cable to earthquakes at various locations, by considering
the theoretical phase arrival times at the DAS cable for earth-
quakes at all possible locations. Figure 4 shows the time-depen-
dent location sensitivity for the DAS cable. We start at zero
time (the origin time of the earthquake). For every possible
earthquake location, we determine which phases will have
arrived at which DAS channel locations. At 1.5 s after the ori-
gin time (first panel in Fig. 4), there are no arrivals from any of
the possible earthquake locations (the earthquake depth is at
6.5 km). Because we march forward in time, P waves (and S
waves) arrive at the channels closest to the cable so there is
sensitivity to earthquake locations closest to the fiber. As time
progresses, the cable is sensitive to earthquakes at greater dis-
tances. At 5.0 s, the fiber is capable of detecting earthquakes
from anywhere in Monterey Bay.

The details of how these sensitivities are calculated are illus-
trated in Figure 5. At each point in time, and for every possible
candidate earthquake location, we calculate which phases have
arrived at which DAS channels. Based on the arrival times, we
can do a grid search to find the best-fit earthquake locations
using the misfit of the actual arrival times to the expected
arrival times for every possible earthquake location. This is
illustrated in Figure 5a,b. The true earthquake location is
shown as a red star, the green indicates how well all possible
earthquake source locations fit the arrival times for the true
location. We then select the most likely candidate locations
(the top 0.3rd percentile; dashed lines in Fig. 5a,b), and

Figure 4. Time-dependent location sensitivity. The location sensitivity is
quantified in terms of the location error (in kilometers). The sensitivity is
a function of time after the earthquake origin time and is shown for various
points in time. The color version of this figure is available only in the
electronic edition.
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determine the centroid of these candidate locations (yellow
cross). The location error is then the distance between the true
and centroid locations. We take the negative of this distance as
the location sensitivity and normalize it between 0 and 1 in
Figure 5c. In this sensitivity test, it is important to quantify
location error uniformly. While it is challenging for multimo-
dal distributions as shown in Figure 5b, using the average error,
such as in the two local maxima case, is reasonable. In this
linear array setup, the algorithm will select a single best loca-
tion, placing it either on the correct side or the opposite. The
mean distance effectively represents the average location error.

Returning to the true DAS cable scenario shown in Figure 4,
we can see expected variations in location sensitivity based on
the geometry of the cable. There is greater sensitivity to loca-
tion immediately north of the cable because the cable is curved
to the south. The cable clearly has sensitivity throughout
Monterey Bay including locations along the SGF.

Magnitude estimation using an empirical scaling law
Most of the DAS interrogators record strain or strain-rate data
translated from optical signals. Studies using DAS data to esti-
mate earthquake magnitude for the purpose of EEW can be
divided into two main categories. (1) Magnitude is estimated
directly from strain or strain rate; (2) strain or strain-rate data
are converted into ground-motion data (displacement, veloc-
ity, or acceleration) first, and then used to estimate magnitude.
Taking the first approach requires empirical relationships
derived based on strainmeters data or DAS data to determine
magnitude. This includes using magnitude scale for local earth-
quakes based on broadband dynamic strain waveforms
recorded on strainmeters (Barbour et al., 2021), using relative
magnitude calibration with reference data from seismometers
(Li et al., 2021) and deriving a new scaling law among peak
strain rate, distance, and magnitude from a large data set
(Yin, Zhu, et al., 2023). For the second approach, once strain
or strain-rate data are converted to ground-motion data,
existing methods can be applied. For example, Lior, Sladen,
et al. (2021) accomplishing this conversion in real time using
slant-stack and estimating magnitude by fitting earthquake
source model; Trabattoni et al. (2023) developed methods

converting deformation derived from DAS data to displace-
ment and then estimate magnitude using locally calibrated
empirical equations. Other methods, for example, using
low-frequency strain amplitudes (Nayak et al., 2024) and coda
waves (Gök et al., 2024) are not suitable for EEW applications
because they require longer waveforms.

Here, we used the base equation (equation 1) described in
Yin, Zhu, et al. (2023) with local calibration for magnitude esti-
mation, which is an empirical approach using DAS strain or
strain-rate data directly. The main reasons behind this choice
were its simplicity, which allows magnitude estimation in real
time, similarity to the magnitude estimation method in EPIC,
and good test results in our data set as shown subsequently.

In equation (1), Ei is the peak strain rate after the P or S
arrival, Di is the hypocentral distance, Ki is the calibration term
at the ith channel, and M is the magnitude. The magnitude
coefficient a and distance coefficient b in Yin, Zhu, et al.
(2023) are 0.437 and 1.269, respectively, for P waves, 0.690
and 1.588 for S waves.

log10�Ei� � aM − b log10�Di� � Ki: �1�

We calibrated the K term for each channel using a subset of
high-SNR events used in the training process of the new
PhaseNet-DAS model (83 events). The peak strain rate within
a 3 s window after the picked P- or S-wave arrival was used.
Visualization of the calibration term across the DAS array
in Figure 6a shows a strong correlation with bathymetry for

Figure 5. Illustration of location sensitivity determination. A straight cable is
used to demonstrate the calculation of location sensitivity. Panels (a) and
(b) illustrate two misfit functions for two different earthquake locations (red
cross) calculated at a specific point in time. The location error is the distance
between the true earthquake location and the centroid (yellow cross) of the
most likely 0.3rd percentile locations (dashed line). The location sensitivity is
quantified as the distance or location error between the true epicenter and
the estimated epicenter. (c) The location sensitivity calculated for all can-
didate earthquake locations at a given point in time. The two example
earthquake locations are shown as red stars. The color version of this figure
is available only in the electronic edition.
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P-wave arrivals, while being relatively stable for S waves.
Because the K term in equation (1) contains all the effects
not explicitly accounted for in this equation, such as cable cou-
pling condition, substrate type, earthquake radiation pattern,
and directional sensitivity of DAS, it is difficult to interpret the
correlation of the K term with water depth.

We calculated the median value of magnitude estimation
from all channels, with the calibration terms. The results using
both P- and S-wave peak strain rates were below 0.3 magnitude
units (Fig. 6).

In the workflow, once an earthquake location is determined,
hypocentral distance and peak strain rate within 3 s of each
channel pick are used to calculate the magnitude using equa-
tion (1). Median magnitude estimation from available channels
will be updated over time. In practice, the final magnitude
estimation can be a weighted average of both P- and S-wave
estimation with a higher weight for the latter.

The P-wave magnitude scaling in Figure 6b slightly deviates
from one-to-one relationship between the estimated

magnitude and catalog magnitude. The deviation shows a
slight trend of overestimation for larger events and underesti-
mation for smaller events. This may suggest that the two coef-
ficients a and b in equation (1) are not appropriate for our DAS
data. This may be due to different regional average attenuation
and the fact that most of the events used in the calibration were
from a narrow azimuth range to the cable, which biased the

Figure 6. Magnitude calibration and scaling results. The amplitude of the
strain observed on all channels for all earthquakes is used to determine
the calibration term K for each channel. (a) Variation in mean calibration
term K along the length of the cable for the P (blue) and S wave (orange).
The lighter blue and orange indicates three standard deviations range. The
mean calibration term for each channel is used in equation (1) to estimate
event magnitude. A comparison of the estimated and true magnitudes
based on P and S waves is shown in panels (b) and (c), respectively. The
overall mean absolute magnitude error is 0.25 for P-wave-based estimates
and 0.16 for S-wave-based estimates. The error bars indicate the median
absolute deviation (MAD) values. The color version of this figure is available
only in the electronic edition.
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results because of the DAS array’s directional sensitivity. To
investigate this, we followed the workflow described in Yin,
Zhu, et al. (2023) to calculate these coefficients from our
own data set, subsequently recalculate K at each channel, and
then re-estimate magnitudes for all events, as shown in
Figure S6. Estimated magnitude with this new scaling does pro-
vide a better fit to the catalog magnitude. However, we only have
a small data set to estimate the coefficients a and b compared to
Yin, Zhu, et al. (2023), which could introduce an overfitting of
data. Therefore, we chose to use the original coefficients.

We also explored the use of an empirical equation developed
for strainmeter to directly map strain to magnitude (Barbour
et al., 2021). Because our DAS interrogator records data propor-
tional to strain, we could also use this equation with our DAS
data set without integration. A comparison of estimated and
catalog magnitudes using this approach shows slightly lower
mean absolute errors than using the DAS strain-rate scaling
(equation 1) and is shown in Figure S7. The strainmeter coef-
ficients derived by Barbour et al. (2021) use peak root mean
squared strain from different gauges (component of strain inside
the instrument), whereas DAS only measures axial strain in one
direction. Based on the scaling relationship we obtained on our
data set, we do not prefer one over the other and will keep test-
ing both in the future when more data are avaible. Considering
this study focuses on using DAS data and most interrogators
output data in strain-rate units, we used the DAS strain-rate data
derived scaling coefficients from Yin, Zhu, et al. (2023) and
equation (1) in the following examples.

EXAMPLE EVENTS
Before showing example earthquakes applying the proposed
workflow to offshore events in Monterey Bay, we briefly sum-
marized the workflow here. (1) A transfer-learning ML model
scans continuous data to identify P- and S-first arrivals. (2) A
weighted grid-search location method uses available phase
picks to estimate the epicenter. (3) A calibrated empirical equa-
tion takes the peak strain rate to estimate the magnitude. We
have observed more than 10 offshore earthquakes in Monterey
Bay with a largest event of magnitude 2.4 (MD, duration mag-
nitude). We show the progression of the earthquakes for two
example events occurring offshore and close to the cable.
Although these events are small, in the case of larger events
in these locations the DAS cable has the potential to increase
warning times. The example events were analyzed retrospec-
tively, with the data processed in moving windows.

Figure 7 shows the grid-search location results at 1.6–11.0 s
after the earthquake origin time for anM 2.4 event. Around 3 s
after the origin time, ∼3000 channels identify P-wave arrivals.
Because of the linear geometry of this closest section of the cable,
the location result at 3.0 s is not well constrained. However, the
location estimate quickly improves around 4.0 s when the P-
wave moveout along a curved portion of the cable becomes
available. This constrains the preferred earthquake location in

the north side of the cable. The grid-search likelihood is plotted
with a logarithmic scale for better visualization. The actual val-
ues are much more concentrated around the maximum cyan
cross. In this case, even before the S waves arrive, the location
is close to the USGS catalog location with a location error of
∼10 km. Because of the weighting scheme for the picks and
the iterative grid-search approach, we can see that the location
converges stably over time to the catalog location. The final loca-
tion error was ∼5.4 km. The magnitude estimates significantly
improve and become more stable after 5.0 s with a ∼0.2
magnitude units difference compared to the USGS catalog
magnitude. There are two other factors that may affect the
magnitude estimation. (1) Directional sensitivity of the DAS
measurement, which makes the first triggered linear section
exhibit smaller amplitude for this earthquake than is typical.
(2) The early contribution of channels at deeper water depths,
which usually have higher SNR. We also conducted a similar
analysis for this event, using the original PhaseNet-DAS model
for phase picking instead, as illustrated in Figures S4 and S5.

Figure 8 shows the results for another M 2.0 (MD) event,
which was located “inside” the arc of this DAS array. Similar
to the previous example, in the first few seconds, P arrivals were
identified in a segment with a more linear geometry, causing
ambiguity in the location. After the P waves reach the end of
the cable, the first S waves have arrived (at 6.1 s), which helps
constrain the location (∼4.8 km location error). The underesti-
mation (∼0.8 units of magnitude) of the magnitude from P
waves (including after the location stabilizes around 6.1 s)
may be due to a lack of sensitivity in the DAS measurement.
Some of the channels are also missing S-wave picks, likely
because this is a relatively small event. We visually checked
the waveforms and found that data from the shallow part of
the cable are quite noisy. However, these inconsistent S picks
do not affect the convergence of the location results because
lower weights were assigned to these low-quality picks.

Overall, the proposed method worked well for the offshore
events we have recorded in Monterey Bay. They served as
proof of concept for the ability of earthquake detection using
an individual offshore DAS array.

DISCUSSION
We showed that an offshore DAS array alone can improve
earthquake detection for the purpose of EEW, serving as a
sentry for offshore fault zones, which are often outside the
effective range of onshore seismic networks. In addition to
California, other regions including Japan, Mexico, and
Taiwan with operational EEW systems delivering public alerts
would benefit from offshore DAS arrays allowing faster event
detection and characterization. Regions that are still testing or
planning for EEW systems should consider the possibility of
adding offshore DAS arrays to the networks. This does not
only apply to other regions such as Chile, Türkiye, and the
Canadian west coast with offshore seismic hazard, but also
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for regions such as Nepal where a fiber-optics DAS network
may be more cost efficient than a high-quality modern broad-
band seismic network. Our proposed workflow can easily be
adapted for a new cable with the pretrained PhaseNet-DAS
model, calibrated magnitude estimation scaling, and the
grid-search location algorithm.

As shown in the examples, the curved geometry of the
MARS cable helps to constrain the earthquake location.
Cables with linear geometry will encounter location ambiguity.
A sensitivity test similar to the one shown in Figure 5 can facili-
tate the initial evaluation of the DAS array’s geometry for
earthquake detection and location. The sensitivity test can fur-
ther be used to estimate additional warning time in the region,
when the DAS array detects earthquakes faster than on-land
networks. To do this, we need to determine how much location
error we are willing to tolerate when we issue the first alert.
Here, we set a location error threshold of 20 km. When a grid
point on the time-dependent location sensitivity test map has
less than 20 km location error, we declare an earthquake is
detected and would issue the first alert. We can compare this
DAS-detection time to the earliest detection EPIC algorithm
can make using current ShakeAlert stations. The minimum
requirement for the EPIC algorithm to issue an alert is that
four stations have identified P-wave arrivals associated to
the same earthquake. Therefore, we calculated the theoretical
travel time for the P wave generated to reach the fourth

ShakeAlert station. By comparing the DAS and four-station
EPIC detection times, we can estimate the additional warning
time. Figure 9 shows the additional warning time for earth-
quakes in the Monterey Bay region with the MARS cable.
When we assume that all the available ShakeAlert stations trig-
ger and EPIC locates the earthquake perfectly, we still obtain
2–6 s additional warning time for earthquakes that happen in
the offshore SGF zone when we make use of the MARS cable.

As pointed out by the ShakeAlert status and performance
review (Lux et al., 2024), the Mendocino triple junction region
offshore Northern California is a particularly challenging area
for the ShakeAlert system. As one of the most seismically active
regions in California, it produced the recent 2021 Mw 6.1 and
6.0 Petrolia sequence, as well as the 20 December 2022 Mw 6.4

Figure 7. Detection performance for an offshore M 2.4 earthquake.
Snapshots of the grid-search location results at different times after the
earthquake origin time are shown in map view. The darker-green color
represents higher likelihoods. The cyan cross marks the grid point with
maximum likelihood and the red star marks the earthquake epicenter from
the USGS catalog. The blue and orange colors on the MARS cable show DAS
channels that have P- (blue) and S- (orange) arrival picks from the SeaFOAM
PhaseNet-DAS model at that time. The lower right panel shows the time
evolution of magnitude estimation using median value from available
channels for P and S waves. The color version of this figure is available only
in the electronic edition.
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Ferndale sequence (Yoon and Shelly, 2024), which caused sub-
stantial damage in Humboldt County including two casualties
(Stein et al., 2023). Most recently, the 5 December 2024Mw 7.0
earthquake occurred offshore Cape Mendocino, which was
widely felt and triggered the ShakeAlert system, along with
the U.S. tsunami warning system. However, due to the geom-
etry limitation of onshore ShakeAlert stations (Fig. 9), it is dif-
ficult to constrain the locations of some offshore earthquakes.
Both ShakeAlert’s finite-fault EEW algorithm FinDer (Böse
et al., 2023; fault-specific templates) and the point-source
EEW algorithm EPIC (Williamson et al., 2023; Bayesian
approach in earthquake location) are adding specific methods
to improve the ShakeAlert performance in this region. Adding
a submarine DAS cable to the existing land-based seismic
network could greatly increase the offshore detection capacity.
We conducted the same warning time calculation assuming
a hypothetical ∼200 km linear cable extending westward off-
shore (Fig. 9b). Based on this cable geometry with the ∼20 km
location error threshold, we can expect up to 20 s of additional
warning time for events happening in regions near the cable
and further offshore. Current state-of-art DAS interrogators
can reach around 200 km distance but may be limited by
repeaters along the cables.

The empirical magnitude scaling method works well but
may be affected by the cable orientation relative to the loca-
tions of expected seismicity. Especially in our case, most of

the calibration events come from the SAF zone and are located
on one side of the array. This may cause a bias that leads to the
underestimation in the offshore examples. With time, more
earthquakes in the Monterey Bay region will be detected with
the cable and we will be able to resolve this bias should it exist.

The next step in the development of real-time EEW algo-
rithms using the DAS data is to optimize the algorithms for
real-time implementation and evaluate the performance includ-
ing latency in data transmission and processing. Currently, data
from all channels with 200 Hz are being streamed in real time to
BSL. Estimated packet latency from the processing unit on site
to our EEW server at the BSL is around 7–8 ms, which does not
include the latency in the data acquisition process. The calcu-
lation time for the algorithm will be strongly dependent on
the optimization of the algorithms and will be discussed in
follow-up studies.

Another technical issue worth mentioning is the limits of
dynamic range of DAS data (van den Ende et al., 2024).
DAS data will “clip” or saturate when the local strain or
strain-rate measurement is too large and phase cycle skipping
occurs. Strong ground motion may produce abrupt phase

Figure 8. Detection performance for an offshore M 2.0 earthquake. Same
legend as Figure 7. The color version of this figure is available only in the
electronic edition.
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changes between two laser
pulses that are more than 2
pi, which cause the DAS record
to clip. Recent studies like
Katakami et al. (2024) pro-
vided possible solutions using
corrections from coda nor-
malization theory. We have
not yet recorded an earthquake
with strong ground motions on
the SeaFOAM cable to explore
this issue, but more studies on
this limitation and potential
technical solutions need to be
developed (van den Ende
et al., 2024).

Other future potential for
integrating DAS data into other
EEW algorithms lies in the
array nature of DAS. DAS’s
dense spatial sampling capabil-
ity may be particularly valuable
for finite source EEW algo-
rithms like FinDer (Böse
et al., 2012), when the cable is
located near the faults of inter-
est. A DAS cable deployed
along the fault may be able to
trace the rupture, and is there-
fore more appropriate for a
finite-fault source assumption.
In addition, it is worth men-
tioning observations of detailed
ground motion using DAS also
opens the discussion of applica-
tions in ground-motion-based
EEW algorithms such as
PLUM (Propagation of Local
Undamped Motion; Hoshiba
and Aoki, 2015). DAS can rec-
ord wavefield with high-spatial
resolution around to provide
detailed ground-motion infor-
mation.

We envision future integra-
tion of this algorithm into the
existing EPIC algorithm, essen-
tially integrating data from
onshore seismic stations with
the offshore DAS array. This
will require further research
on both the operation side
and the algorithm side. GPU

Figure 9. Additional earthquake early warning time provided by offshore DAS cables. The additional warning time is
calculated for each grid point based on the location sensitivity map for the two cable geometries. We assume that
an alert can be issued when the location error from the DAS-based detection drops below a threshold of 20 km. We
compare this to the time it would take for the P wave to reach the fourth ShakeAlert station. The additional warning
time is then the difference between these two times. (a) Additional warning time for events happening in the region
around the MARS cable, and (b) results for a hypothetical cable located offshore near the Mendocino triple junction,
a region where most offshore California earthquakes take place. The color version of this figure is available only in
the electronic edition.
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is needed to process real-time data using the PhaseNet-DAS
model. The trade-off between detection speed and detection
accuracy needs to be evaluated. The examples shown in this
article are using all the DAS channels, which require a large
volume of data to be processed in real time. Techniques such
as channel selection, stacking, and data decimation may be
helpful for reducing the data volume without lowering the
earthquake detection accuracy. Finally, a decision module will
be needed if we want to combine the outputs from the DAS
array with the traditional network. To determine just how
much warning time will be gained for offshore events, the next
step is to start processing the data in real time.

CONCLUSION
We developed a complete workflow for using a seafloor DAS
array to detect earthquakes in real time. The workflow contains
a locally retrained ML model for phase picking, an iterative
grid search for earthquake location, and a locally calibrated
empirical equation to estimate earthquake magnitude. With
examples from offshore earthquakes in the SGF system, we
show that the workflow is robust in phase picking, earthquake
location, and magnitude estimation. It can potentially improve
the performance of the current ShakeAlert EEW system in
this region, with up to 6 s of additional warning time. Our
workflow can be applied to other DAS arrays and provide
estimation of the benefits such as additional EEW warning
time in the region. We anticipate integrating this workflow into
ShakeAlert’s EPIC algorithm in the near future to enhance
offshore EEW in California.

DATA AND RESOURCES
Figure 1 was drawn using PyGMT available at https://www.pygmt.org/
v0.4.0, a wrapper around Generic Mapping Tools version 6 (GMT6;
Wessel et al., 2019), with bathymetry data from National Centers
for Environmental Information (2018). The earthquakes shown in fig-
ure are from U.S. Geological Survey (USGS) at https://www.usgs.gov/
programs/earthquake-hazards/earthquakes and the International
Seismological Centre-Global Earthquake Model (ISC-GEM) Catalog
(Di Giacomo et al., 2018). All the distributed acoustic sensing
(DAS) data shown in this article are from the SeaFOAM project
described in Romanowicz et al. (2023). All websites were last accessed
in August 2024. The supplemental material includes detailed explana-
tions of the machine learning (ML) model training process
and performance evaluation, along with videos corresponding to
Figures 3 and 7.
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