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S U M M A R Y 

This paper presents a novel approach to extract scientifically valuable information about 
Earth’ s ph ysical phenomena from unconventional sources, such as multimodal social me- 
dia posts. Employing a state-of-the-art large language model (LLM), Gemini 1.5 Pro’s, we 
estimate ear thquake g round shaking intensity from these unstructured posts. The model’s out- 
put, estimated intensity values, aligns well with independent observational data. Furthermore, 
our results suggest that LLMs, trained on vast internet data, ma y ha v e dev eloped a unique 
understanding of physical phenomena. Specificall y, Goo gle’s Gemini models demonstrate a 
simplified understanding of the general relationship between earthquake magnitude, distance 
and intensity, accurately describing observational data even though it is not identical to estab- 
lished models. These findings raise intriguing questions about the extent to which Gemini’s 
training has led to a broader understanding of the physical world and its phenomena. The 
ability of Generative AI models like Gemini to generate results consistent with established 

scientific knowledge highlights their potential to augment our understanding of complex phys- 
ical phenomena lik e earthquak es. The flexible and ef fecti ve approach proposed in this study 

holds immense potential for enriching our understanding of the impact of physical phenomena 
and improving resilience during natural disasters. This research is a significant step toward 

harnessing the power of social media and AI for natural disaster mitigation, opening new 

avenues for understanding the emerging capabilities of Generative AI and LLMs for scientific 
applications. 

Key words: Machine lear ning; Ear thquake early war ning; Ear thquake g round motions; 
Earthquake hazards. 
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 I N T RO D U C T I O N  

arthquakes pose significant risks to life and property, with the po-
ential to cause widespread de v astation. Due to their unpredictable
ature and potential for catastrophic consequences, mitigating
he de v astating impact of earthquakes requires a comprehensive
pproach. This encompasses preparedness measures (e.g. miti-
ation in the form of better buildings and infrastructure), early
 arning systems, and ef fecti v e post-earthquake response strate gies

B öse et al. 2023 ). Earthquake earl y w arning (EEW) systems have
otential to play a crucial role by providing timely alerts before
he arri v al of strong ground shaking, enabling individuals to take
rotective actions such as ‘drop, cover, and hold on’ (Allen et al.
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
019 ). Fur ther more, ef fecti ve post-earthquake responses include
earch and rescue operations, damage assessment and infrastruc-
ure restoration, which are critical to saving lives. By combining
reparedness measures, early warning systems and rapid response
trategies, communities can significantly reduce the impact of
arthquakes and promote resilience in earthquake-prone regions. 

Earthquake intensity is a qualitative measure of the effects of
n earthquake at a specific location, distinct from magnitude,
hich quantifies the energy released at the source (Davison 1900 ).

ntensity scales hav e evolv ed ov er time to characterize the sev erity
f ground shaking based on observations of human reactions,
tructural damage and environmental impacts (Musson, Gr ünthal
 Stucchi 2010 ). Intensity data are crucial for understanding
oyal Astronomical Society. This is an Open Access 
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historical earthquakes that predate instrumental recordings, 
allowing for magnitude estimations and insights into long-term 

seismicity patterns (Nuttli 1973 ; Johnston 1996 ; Ambraseys & 

Bilham 2003 ). While intensity can be correlated with ground 
motion parameters, such as peak ground acceleration, these rela- 
tionships are complex and subject to significant scatter (Musson, 
Gr ünthal & Stucchi 2010 ). The intensity provides valuable insights 
into the actual e xperiences observ ed at a given site, making it 
particularly useful for assessing seismic hazards, understanding 
site response, ascertaining the shaking level and communicating 
earthquake impacts to the public (Hough et al. 2000 ; Musson 
2000 ). Recent advancements, including online questionnaires and 
automatic algorithms, have improved the accuracy and reliability 
of intensity data collection and assessment (Wald et al. 1999 ; 
Musson 2009 ). 

In the realm of EEW systems, the intensity is used to estimate 
the appropriate level of alert and guide immediate safety measures 
(Allen et al. 2012 ). In post-earthquake responses, intensity guides 
emergency responders in prioritizing areas for assistance and as- 
sessing the extent of damage (Wald et al. 2005 , 2022 ). It also finds 
utility in other domains, including insurance, earthquake engineer- 
ing, loss estimation and disaster planning. Despite its wide-ranging 
applications, there e xist sev eral practical challenges associated with 
measuring earthquake intensity. One primary challenge stems from 

the subjective nature of intensity, as it is contingent upon observed 
effects rather than instrumental measurements. Another challenge 
lies in inconsistencies in reporting and/or the significant variability 
of intensity even at the same distance from earthquakes of the same 
magnitude (Hanks & Johnston 1992 ; Minson et al. 2021 ) due to 
factors like proximity to the fault, earth structure and shallow ge- 
olo gical properties. Lastl y, measuring intensity in real time poses 
difficulties, as it necessitates the involvement of trained observers 
for data collection for properly assigning higher (damaging) intensi- 
ties (Wald et al. 2024 ). These challenges can introduce uncertainties 
into intensity assignment. 

The advent of social media platforms has fundamentally trans- 
formed the way information is disseminated during natural disas- 
ters and crises. Social media users are now recognized as valuable 
providers of timely information, enabling the characterization of 
physical-world events (Hughes & Palen 2009 ). They often share 
real-time updates, eyewitness accounts and multimedia content, 
offering a rich source of data for disaster response and research 
purposes (Earle et al. 2010 ). In the context of earthquake disaster 
management, sev eral studies hav e shown the application of social 
media data for earthquake detection and damage area identification 
(e.g. Earle et al. 2011 ; Sakaki et al. 2012 ; Flores et al. 2017 ; Bossu 
et al. 2018 ), as well as for intensity estimation (e.g. Burks et al. 
2014 ; Cresci et al. 2014 ; D’Auria & Convertito 2016 ; Mendoza 
et al. 2019 ). Fur ther more, the increasing pre v alence of CCTV cam- 
eras in urban and rural areas provides an unprecedented amount 
of real-world CCTV footage and video postings from social me- 
dia platforms that can be harnessed for scientific research. This 
footage offers a unique opportunity to study natural hazards such 
as earthquakes, floods and wildfires in unprecedented detail. By 
analysing CCTV footage, scientists can track the spatiotemporal 
evolution of these events, identify previously hidden patterns and 
relationships, and gain deeper insights into the underlying physi- 
cal processes as well as human behaviour during such events (e.g. 
Vinnell et al. 2022 ). Additionally, it can be used to validate and 
calibrate numerical models, which are essential tools for predict- 
ing the behaviour of natural hazards and assessing their potential 
impacts. Ho wever , extracting useful kno wledge from social media 
data presents significant challenges, including issues of misinfor- 
mation, irrele v ant content and language variations. Sophisticated 
method developments are required to overcome these challenges 
and extract valuable insights from the often noisy data (Imran et al. 
2015 ). 

Generative artificial intelligence (GenAI) and large language 
models (LLMs) have experienced remarkable advancements in re- 
cent years, demonstrating successful applications in various do- 
mains. These powerful tools hold immense potential for further 
enhancing the capabilities of crowdsourcing in earthquake studies 
and risk mitigation efforts. GenAI and LLMs possess the ability to 
extract per tinent infor mation from unstr uctured social media posts. 
In this paper, we show that they can analyse this information to esti- 
mate the intensity of local ground shaking with unprecedented ease 
and flexibility. We use Modified Mercalli Intensity scale (Wood & 

Neumann 1931 ; Richter 1958 ) for intensity estimation. This capa- 
bility paves the way for novel approaches to understand collective 
behaviour patterns (Zhou et al. 2012 ), gain insight into the dynam- 
ics of information propagation during crisis situations (Palen & 

Anderson 2016 , Bagrow et al. 2011 ), rapidly evaluate the impact 
of earthquakes, guiding emergency response efforts, provide situa- 
tional a wareness (Y in et al. 2012 ), and automatically collect valu- 
able macroseismic data from unconventional sources (e.g. Bossu 
et al. 2024 ). By combining the collective wisdom of social media 
users with AI-driven analytics, stakeholders such as emergency re- 
sponders, policymakers and researchers can gain a comprehensive 
understanding of disaster events. This includes real-time insights 
into the affected areas, and the severity of shaking. Consequently, 
EEW systems can be improved, and resilience strategies can be 
enhanced based on this real-time, user-generated information. 

2  DATA  

YouTube, X and TikTok (each ∼33 per cent) serve as the primary 
sources of data collected and analysed in experiments of this study. 
Although official application programming interfaces (APIs) are 
available for automated data retrie v al, at this stage, we opted to 
collect data in the form of screenshots and screen recordings of 
rele v ant posts containing text, images, audio and/or videos. This 
approach allows us to directly evaluate the ability of LLMs to ex- 
tract and anal yse rele v ant information from unstructured data in its 
final form as presented to humans. By doing so, we avoid the ad- 
ditional challenges and complexities associated with working with 
each platform’s specific API, such as rate limits, access restric- 
tions and data formatting inconsistencies for our e xplorativ e work. 
We collected our data set by searching for earthquake-specific key- 
words, including terms like ‘earthquake,’ ‘tremor,’ ‘shaking,’ and 
specific earthquake event names. We then removed posts curated by 
professionals or those whose authenticity or associated earthquake 
could not be confidently identified. Recognizing the crucial role of 
location in studying spatiall y v ariable ground shaking intensity, we 
limited our data to posts that included at least one location identifier. 
These identifiers could be mentions of the post/observation location 
in the text or speech, or visual cues in the provided image or video, 
such as recognizable landmarks or prominent distinctive buildings. 

This procedure resulted in a total of approximately 84 posts doc- 
umenting observed or experienced ground shaking caused by 7 
earthquakes occurring in the United States (Nor ther n, Souther n Cal- 
ifornia, Oklahoma and New Jersey), Japan (Noto and Tohoku), and 
Taiwan (Hualien) between 2011 March and 2024 mid-April, span- 
ning a magnitude range of 4.6 to 9.1 Mw (Table 1 ). The collected 
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Table 1. List of earthquakes and the number of posts collected and analysed for each event in this study. 

Earthquake location Earthquake date time (UTC) Magnitude MW Number of posts 

Tohoku, Japa n 2011–03-11 05:46:24 9.1 7 
Lake Almanor, California USA 2023–05-11 23:19:41 5.5 3 
Noto Peninsula, Japan 2024–01-01 07:10:09 7.5 8 
Prague, Oklahoma, USA 2024–02-03 05:24:28 5.1 10 
Malibu, California, USA 2024–02-09 21:47:27 4.6 2 
Hualien City, Taiwan 2024–04-02 23:58:12 7.4 7 
Tewksbury, New Jersey, USA 2024–04-05 14:23:20 4.8 45 

d  

c  

n  

o  

t  

o  

i  

t  

e  

t  

c  

a
 

i  

m  

i  

d  

c  

w  

c  

a  

o  

r  

v  

t  

e  

m  

b  

a
 

t  

o  

t  

i  

f  

c  

e  

f  

a  

d

3

G  

p  

R  

(  

2  

e  

i  

s  

r  

I  

f  

t
 

m  

s  

p  

c  

i  

t  

1  

t  

G  

i  

a  

m  

p  

r  

f  

t  

a
 

p  

n  

g  

T  

w  

c  

a  

e  

l  

t  

c  

p  

o
 

s  

e  

p  

a  

s  

e  

t  

f  

s  

d  

b  

z  

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/240/2/1281/7921623 by guest on 05 M

arch 2025
ata can be categorized into two main groups: (a) CCTV footage
apturing the moment of shaking, and (b) social media posts or
e ws intervie ws where indi viduals share their personal experiences
f feeling the earthquake. It is important to acknowledge the po-
ential limitations of this data collection methodology. The focus
n specific social media platforms and keyword-based search may
ntroduce bias into the data set. To address this, we employed mul-
iple verification methods, including cross-referencing with official
ar thquake repor ts and news ar ticles, to ensure the authenticity of
he collected data and the associated earthquake events. This pro-
ess was performed manually in this study but it can be automated
s well. 

To assess the model’s ability to attend to and extract rele v ant
nformation (textual, visual and/or auditory) from diverse social

edia posts, we intentionally included screenshots and record-
ngs with varying characteristics. These variations encompassed
ifferent video lengths, cropping sizes, languages and background
olours, simulating the wide range of formats encountered in real-
orld social media content. The captured views ranged from those
ontaining the opinion or experience of a single individual, such
s a short tweet, to those encompassing a tweet and a selection
f its replies or comments. These replies and comments could be
ele v ant, confirming the experience of the same earthquake or pro-
iding supplementar y infor mation about the ear thquake source, or
hey could be irrele v ant, such as jokes, unrelated discussions, or
 ven misinformation. Additionall y, both video and image views
ight contain unrelated information, such as advertisements or

ackground visuals, intentionally introduced to assess the model’s
bility to focus on the earthquake-related content (Fig. 1 ). 

The content within the posts provides valuable insights into
he subjective experiences of individuals, including descriptions
f shaking intensity, emotional responses and reports of damage
o personal belongings or surrounding structures. The inclusion of
rrele v ant information is crucial for e v aluating the model’s per-
ormance in real-world scenarios, where social media posts often
ontain extraneous content that is not pertinent to the earthquake
vent. By testing the model’s ability to discern relevant information
rom noise, we can gain a better understanding of its ef fecti veness
nd robustness in extracting valuable insights from the complex and
ynamic landscape of social media data. 

 M E T H O D  

enAI and LLMs have revolutionized the field of natural language
rocessing (Wei et al. 2022 ). Models such as (Bidirectional Encoder
epresentations from Transformers) BERT (Devlin et al. 2018 ),

Bidirectional Auto-Re gressiv e T ransformers) B ART (Lewis et al.
019 ) and (Generative Pre-trained Transformer) GPT-4 (Achiam
t al. 2023 ) have demonstrated remarkable capabilities in generat-
ng coherent and contextuall y rele v ant text, translating languages,
 i
ummarizing documents, and performing various other language-
elated tasks, often surpassing human performance in benchmarks.
n this study, we utilize the Gemini 1.5 Pro (Reid et al. 2024 ) model,
rom Gemini (Gemini Team 2023 ) family, to process and analyse
he collected data. 

Gemini (Gemini Team 2023 ), a state-of-the-art large language
odel de veloped b y Goo gle, is a suite of generative AI models de-

igned to interpret and respond to user inputs using natural language
rocessing. What sets Gemini apart is its multimodality, meaning it
an reason across different input data types, including text, audio,
mages and video, making it particularly well suited for analysing
he diverse social media content in our data set. We chose Gemini
.5 Pro (Reid et al. 2024 ) for this study due to its unique combina-
ion of multimodality processing and long-context understanding.
emini 1.5 Pro delivers a breakthrough in long-context understand-

ng, with the ability to process up to two million tokens consistently,
chieving the longest context window of any large-scale foundation
odel to date. This e xpanded conte xt windo w allo ws for more com-

rehensive processing of information, leading to more consistent,
ele v ant and useful results. These features are particularly valuable
or our research, as they allow us to ef fecti vel y extract insights from
he full range of information present in the data and for developing
 more nuanced understanding of earthquake impacts. 

Gemini, like many large language models, operates through
rompting. This involves providing the pre-trained model with a
atural language instruction or ‘prompt’ that guides its response
eneration without requiring further training or parameter updates.
he ef fecti veness of a prompt is crucial in steering the model to-
ards the desired output. A well-crafted prompt should exhibit

larity, conciseness and sufficient context, enabling the model to
ccurately comprehend and execute the task. Key elements include
xplicit task specification, rele v ant backg round infor mation, natural
anguage phrasing, illustrative examples and consistent coherence
hroughout the prompt. By meticulously designing prompts, users
an fine-tune the model’s behaviour and leverage its capabilities to
roduce precise and pertinent outputs tailored to specific needs and
bjectives. 

Several prompting techniques exist, including zero-shot, one-
hot, few-shot and multishot prompting (Brown et al. 2020 ; Kojima
t al. 2022 ). Zero-shot prompting, also known as direct prompting,
rovides the model with only instructions and no examples. This
pproach is well suited for creative tasks and benchmarking. One-
hot prompting offers the model a single concise and descriptive
xample to guide its output. Few-shot and multishot prompting, on
he other hand, provide multiple examples, proving more ef fecti ve
or complex tasks requiring pattern replication or specific output
tructures that are difficult to describe explicitly. Our experiments
emonstrate that Gemini can estimate ground shaking intensity
ased on the content of a social media post even through a simple
ero-shot prompt such as: ‘ Use the video, audio and text
n this social media post shared by a person who 

https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae436#supplementary-data
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Figure 1. A composite of screenshots that show the diversity of the data set used in this study, which comprises screenshots and screen recordings of social 
media posts documenting individual (e.g. a, d, e and f) or group (e.g. b) experiences of earthquake shaking, as well as the responses of animals (e.g. h). 
These posts encompass a range of formats, including images (b) and videos (d to k) containing textual information, presented in various languages (e.g. c), 
sizes/durations, and background settings. The video content spans both indoor (g, h and i) and outdoor (j, k and l) environments. Indoor videos primarily consist 
of CCTV footage capturing the moment of earthquake shaking, while outdoor videos include similar CCTV footage as well as recordings of infrastructure 
damage. Additionally, the data set incorporates post-earthquake narrative videos where individuals describe their personal experiences and observations during 
the earthquake (e.g. d to f). 
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felt an earthquake to estimate the intensity of 

ground shaking at its location in the MMI Scale. ’ 
This capability stems from the inclusion of MMI scale definitions 
and information within its training data. Ho wever , for improved 
accuracy and consistency in these estimations, more sophisticated 
prompt engineering techniques are necessary (Wang et al. 2023 ). 

The few-shot prompt employed in this study, detailed in Table S1 
( Suppor ting Infor mation ), comprises four key components: back- 
g round infor mation (persona and context), instr uction or quer y, 
desired output format and exemplar. The exemplar serves as a tem- 
plate, outlining the structure of the expected output. This structure 
includes: (1) summarizing pertinent information extracted from the 
input data (e.g. post time and location, potential earthquake as- 
sociation, shaking duration, building type, people’s reactions; (2) 
organizing collected visual, auditory and textual observations and 
evidence; (3) providing an estimated MMI value; (4) explaining 
the reasoning behind the estimation process; and (5) acknowledg- 
ing limitations that may impact the model’s estimate. To facilitate 
complex reasoning, the prompt utilizes the chain-of-thought (CoT) 
prompting technique (Cobbe et al. 2021 ; Suzgun et al. 2022 ). CoT 

prompting encourages LLMs to break down problems into interme- 
diate steps, mimicking human thought processes. By presenting the 
LLM with examples that explicitly demonstrate reasoning steps, it is 
encouraged to follow suit, leading to more accurate and transparent 
results. 

To enhance the reliability and stability of responses, our 
pipeline incorporates contextual information such as the distance 
to the earthquake epicentre and the earthquake’s magnitude 
(Fig. 2 ). Initially, we extract the post’s location (city, state and 
country) from the input video/image using a one-shot prompt: 
‘Analyse the provided image/video and extract 

any information that indicates the location of 

the user or post. Identify the specific location 

name, including city, state (if applicable) and 

country. Limit your response only to the extracted 

location. Example output: Imperial, CA ’. Following 
this, we automatically calculate the distance from the earthquake 
epicentre. Both the earthquake magnitude and the computed 
epicentral distance are then integrated into the main prompt to 
query the full intensity analysis. 

We conducted our analysis using Vertex AI, a Google Cloud 
machine lear ning (ML) platfor m that facilitates the training, de- 
ployment and customization of AI applications and ML models. 
Our pipeline leveraged the Gemini 1.5 Pro model with specific 
parameters to ensure consistency and control over the generated 
outputs. We set the temperature value to 0.5, which promotes more 
deterministic and probability-driven predictions, favouring the most 
lik ely tok ens and reducing randomness. Additionally, we maintained 
the default output token limit of 8192, equi v alent to approximatel y 
32 768 characters, to accommodate the desired output length. Fi- 
nally, we employed a top-p value of 0.95, which dictates the selec- 
tion of tokens based on their cumulative probability distribution, 
ensuring diversity while maintaining focus on the most probable 
options. 

art/ggae436_f1.eps
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae436#supplementary-data
https://academic.oup.com/gji/article-lookup/doi/10.1093/gji/ggae436#supplementary-data
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Figure 2. A schematic illustration of the processing w orkflo w employed in this study . Initially , images and videos are input into the model. A basic query is 
then executed to extract available evidence pertaining to the location of observation. This evidence can manifest in textual, visual or auditory formats. The 
extracted location information is subsequently utilized to calculate the distance (great circle in kilometer) to the earthquake’s epicentre. This distance, along 
with the earthquake’s magnitude, serves as input for the next prompting stage in which a comprehensive intensity analysis is conducted. 
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 R E S U LT S  

e used Gemini 1.5 Pro (Reid et al. 2024 ) model and few-shot
rompting (see the method section for more details), for processing
nd analysing the collected data. Table 2 showcases an example
f Gemini’s output, processing and analysing the contents of a so-
ial media post featuring a CCTV video during the 2024 M4.8
arthquake in New Jersey. The model effectively extracts key infor-
ation such as the post’s location, earthquake magnitude, shaking

uration, building type and reactions of humans and animals. It then
ummarizes and analyses visual, auditory and textual cues (e.g. the
ound of objects rattling) to estimate the shaking intensity on the

MI scale, providing a rationale for its estimation. The ability
o perform cross-modal analysis and acknowledge limitations like
ncomplete views or unknown epicentral distances is noteworthy.
o wever , it is crucial to recognize that LLMs like Gemini can gen-

rate hallucinations, leading to variations in estimated MMI values
cross different inferences. To address this and obtain more consis-
ent results with uncertainty quantification, we calculate the mean,
edian and standard deviation of the estimated MMI values (rep-

esented as ‘ mid mmi value numeric ’) across ten inferences on
ach sample. Gemini’s outputs for each post, along with the corre-
ponding input data, are available in the supplementary materials of
his paper. 

To validate our findings, we compared them with independently
etermined intensities from the ‘Did You Feel It?’ (DYFI) data
et (Atkinson & W ald 2007 ; W ald et al. 2011 ; Quitoriano &
ald 2020 ). This valuable USGS (United States Geological

urv e y) resource collects post-earthquake reports (through online
uestionnaires) from individuals who experienced the event,
roviding insights into ground shaking intensity and its geographic
istribution. Par ticipants share obser vations through the DYFI web-
ite or app, contributing to scientific understanding of earthquake
ffects. Despite inherent variability and uncertainties, DYFI data
erves as a crucial ‘ground truth’ reference for validating Gemini’s
stimates. Fig. 3 illustrates the mean MMI values estimated by
emini (with ±1 standard deviation) for two well-documented

arthquakes (New Jersey and Oklahoma) overlaid with USGS DYFI
ata, seismogram-based MMI estimations (Worden et al. 2010 ;
ald et al. 2022 ), and the re gion’s e xpected attenuation model.
t  
emini’s MMI estimates align with the expected intensity range
erived from ground motion prediction models, felt reports and
nstrumental measurements at comparable distances, supporting
he validity of our approach. The highest computed uncertainties
n estimated MMI valused is related to a CCTV footage recorded
n High Bridge, NJ, ∼11.92 km from the epicentre of M4.8
ewksbur y ear thquake. This video, with a limited view to the
ky and a few trees in an open area, offers limited evidence of
haking intensity such as the tree swaying and lacks other strong
udio and textual supports for a more deterministic intensity
stimation. Fur ther more, Fig. 4 demonstrates that Gemini’s mean
MI values for these earthquakes fall within a similar intensity-

istance distribution as the DYFI data. Both events, classified as
oderate with reported intensities primarily between III and IV,

xhibit clustering around population centres like New York City
nd Tulsa. 

While we used DYFI data as the ground truth for this study due to
ts widespread use and accessibility, it is important to acknowledge
ts limitations. The original MMI scale was designed to reliably
istinguish between shaking levels that dif fer b y roughl y a factor
f tw o. Ho wever , DYFI intensities may not accurately reflect MMI
alues as originally defined. 

The low-range MMIs (i.e. III to IV) often form the majority of
elt reports collected for the moderate earthquakes. To assess the
odel’s ability to generalize to other regions and perceive higher

ntensity levels, we analysed data from larger events in diverse lo-
ations. Ho wever , due to a limited number of available posts, we
estricted our analysis to comparing Gemini’s estimates with the
istributions of DYFI data reported for the city where most of our
ost data originated (Fig. 5 ). The results demonstrate that Gem-
ni’s estimated MMIs generally fall within the interquartile ranges
f D YFI reports. Notably , Gemini’s intensity estimates for major
vents (M7.4, 7.5 and 9.1) are consistently and significantly higher
han those for moderate events (M4.6, 4.8 and 5.1). The most signif-
cant discrepancy between our estimates and DYFI data is observed
or the M7.4 Taiwan event. This could potentially be attributed to
igh uncertainties in estimating content source locations and the
parsity of DYFI data for the region. 

In practice, it is unusual to assign intensities to single observa-
ions (Grunthal et al. 1998 ). Some systems, like DYFI, calculate

art/ggae436_f2.eps
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Table 2. An example of Gemini’s output for a social media post. This post documents the ground shaking experienced in Boonton, NJ, located approximately 
37.6 km from the epicentre of the M4.8 earthquake that occurred on 2024 April 5, in Tewksbury, New Jersey, USA. 

{ ‘felt by user’: ‘Yes’, 
‘class source’: ‘Surveillance Footage (YouTube)’, 
‘post location’: ‘Boonton, NJ (based on the news ticker)’, 
‘post date time’: ‘April 5, 2024 (exact time not specified)’, 
‘ear thquake location’: ‘Nor th-east U.S. (N18V)’, 
‘earthquake magnitude’: ‘4.8 (provided in video description)’, 
‘distance to earthquake epicentre’: ‘37.59 km (provided by user)’, 
‘shaking duration’: ‘Several seconds, as observed in the video footage’, 
‘building type’: ‘Coffee shop (commercial building)’, 
‘building materials’: ‘Unknown’, 
‘human reaction’: ‘Panic and fear, evident from their hurried movements, seeking cover under tables, and expressions of distress.’, 
‘animals reaction’: ‘Not visible in the video’, 
‘furnishing’: ‘Tables, chairs, light fixtures, and other typical coffee shop items’, 
‘language’: ‘English’, 
‘natural environment’: ‘Not visible in the video’, 
‘video evidence’: { 
‘Object Movement’: ‘Visible shaking of light fixtures and furniture, indicating ground movement.’, 
‘People Running and Seeking Cover’: ‘Individuals exhibiting panicked behaviour, rushing for exits, and taking cover under tables, demonstrating a perception 
of danger.’, 
‘Limited Object Falling’: ‘Some small objects may appear to be falling or displaced, but the video quality makes it difficult to ascertain the extent.’ } , 
‘audio evidence’: { 
‘Sounds of Distress’: ‘People expressing fear and concern, with exclamations like ‘Earthquake!’ and ‘Mommy!’’, 
‘Background Noise’: ‘General coffee shop ambiance and potential sounds of objects rattling or moving.’ } , 
‘textual evidence’: { 
‘Video Description’: ‘Provides information about the earthquake’s magnitude and location.’, 
‘News Overlay’: ‘Mentions tremors lasting several seconds and being felt 200 miles away, suggesting a wider impact of the earthquake.’ } , 
‘mmi estimation’: ‘MMI IV or MMI V’, 
‘mid mmi value numeric’: ‘4.5 ′′ , 
‘estimation confidence’: ‘0.7 ′′ , 
‘visual observation’: ‘The video evidence suggests moderate ground shaking, with notable movement of objects and people reacting with fear and taking cover. 
The absence of significant damage or widespread falling objects indicates that the intensity is likely not higher than MMI V.’, 
‘auditory cues’: ‘The audio evidence supports the visual observations, with people’s vocal expressions of fear and distress indicating a level of alarm consistent 
with moderate shaking.’, 
‘textual information’: ‘The video description and news overlay provide valuable context about the earthquake’s magnitude and its broader impact, reinforcing 
the assessment of moderate shaking intensity.’, 
‘analysis of evidences’: ‘The combined evidence from visual, auditory and textual sources points to an earthquake intensity in the range of MMI IV to MMI V 

at the coffee shop location. The observed effects align with the characteristics of these MMI levels, where objects move notably, people feel frightened and 
react, but significant damage is not widespread.’, 
‘reasoning’: ‘The observed effects, such as the shaking of light fixtures and furniture, people’s reactions, and the lack of major damage, are consistent with the 
descriptions of MMI IV and V. The distance from the epicentre and the earthquake’s magnitude also support this estimation.’ } 
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a Community Decimal Intensity by spatially a veraging answ ers to 
questions about earthquake effects (Wald et al. 2024 ). Others aver- 
age the intensity values themselves or use fuzzy logic to determine 
representative answers. A simple way to aggregate intensity estima- 
tions in our proposed approach is to analyse colocated posts from 

multiple users simultaneously. Gemini’s ability to handle large con- 
text ranges allows us to do this. We can analyse multiple posts at 
once and estimate intensity based on the combined evidence. To 
test this, we processed up to 15 files (images and videos) or 66 000 
tokens, simultaneously for each location. The results, shown as di- 
amonds in Fig. 5 (a), demonstrate that processing multiple posts 
leads to reasonable results. While this significantly increased the 
inference time (up to a few minutes), we observed that the inten- 
sity estimates are more consistent across different inferences. This 
suggests that multiple user inputs help to better constrain the MMI 
estimates. An added benefit of this aggregation method is that the 
results can be shared publicly without revealing personally identifi- 
able information or raising other pri v acy concerns. 

Fig. 6 presents a comparison of estimation uncertainty (through 
bootstrapping) in Gemini’s results for CCTV footage versus social 
media posts and news interviews. Our estimated model uncertainty 
indicates a higher variability in model’s estimates derived from 

CCTV footage relative to those derived from social-media posts 
(Fig. 6 a). In contrast, Fig. 6 (b) suggests that the model often rates 
its estimates from CCTV footage with relati vel y higher confidence 
values. 

One possible explanation for the model’s higher confidence in 
CCTV footage could be the richer set of information typically 
available in videos, compared to the often limited evidence found 
in social media posts, such as short tw eets. How ever, this could 
result in a higher variability in the model’s estimates as well, po- 
tentially, due to a wider range of observations/evidence available 
for the analysis and reasoning. We did not observe a strong cor- 
relation between the estimated uncertainties and the confidence 
values provided by Gemini. Interestingly, the narrative descriptions 
of shaking experiences shared by users in social media posts and in- 
terviews, although less direct than the captured shaking moments in 
CCTV footage and reducing the confidence of the model on its es- 
timate, appear to constrain the model’s estimates, resulting in lower 
overall uncertainties compared to estimates from CCTV footage. 
Ho wever , the less deterministic nature of descripti ve e vidence leads 
to a wider range of uncertainties compared to the more visually 
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Figure 3. Scatter plots presenting a comparison of estimated MMIs from the Gemini model (circles with error bars) against several sources of observed data. 
These include: (1) instrumentally derived MMIs computed from peak ground acceleration recorded by seismic stations; (2) DYFI macroseismic data collected 
by the USGS; and (3) the expected ground motion attenuation model for rock sites on the East Coast, along with its ±1 standard deviation range. Panels (a) 
and (b) display the results for the New Jersey and Oklahoma earthquakes, respectively. Note that the distance scale on the x -axis is logarithmic. 
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xplicit evidence in videos. Factors such as limited views, low-
uality audio, and the lack of informativ e conte xtual information
n some CCTV footage could contribute to the higher uncertainties
bserved in MMI estimations for this data type. Further investiga-
ion is warranted to better understand the observed differences in
ncertainty between data types and to explore methods for improv-
ng the model’s performance and confidence across all sources of
nformation. This could involve analysing the specific types of de-
cripti ve e vidence that contribute to lower uncertainties, as well as
eveloping techniques to extract more contextual information from
CTV footage. 

 D I S C U S S I O N  

.1 How does gemini estimate MMI? 

n addition to reading and listening, is Gemini capable of under-
tanding and applying concepts in physics? Our results suggest
hat Gemini can estimate ground motion intensity from social me-
ia posts and CCTV videos with a comparable variability to the
stimates based on conventional felt reports and instrumental mea-
urements. This capability stems from Gemini’s advanced under-
tanding of language, images, video and audio. While the model
f fecti vel y retains detailed and rele v ant information from the in-
ut data in most cases, its capabilities, similar to humans, are
ot without limitations and can be prone to errors due to factors
uch as low-quality inputs, limited evidence, and the presence of
oise. For example, misinterpretations of visual cues or ambigu-
us language in social media posts can lead to inaccurate estima-
ions. Beyond its information extraction and understanding abil-
ties, Gemini appears to utilize additional sources of knowledge
bout general magnitude–distance–intensity relationships of earth-
uakes, presumably acquired during its training, in its reasoning and
ecision-making processes. Visual inspection of the model’s out-
uts reveals frequent references to epicentral distance, earthquake
agnitude, and post comments in the reasoning section, suggest-

ng that Gemini acti vel y incorporates this contextual information,

art/ggae436_f3.eps
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Figure 4. Histograms illustrating the distribution of earthquake intensity with respect to epicentral distance for the New Jersey (a) and Oklahoma (b) 
earthquakes, utilizing USGS DYFI data. Each panel presents a 2-D histogram (represented by colour coded contours), while its margins display 1-D histograms 
with counts on the axes. The circle markers represent the estimated mean MMI values for individual social media posts, as determined by the Gemini model. 

Figure 5. Comparison of Gemini’s estimate with (a) and without (b) epicentral distance and earthquake magnitude in the prompt. Each boxplot with whiskers 
illustrates the distribution, quartiles and outliers of reported DYFI data for individual earthquakes within specific zip codes of a city. Circle markers represent 
the estimated mean MMI v alues deri ved from each social media post, within the same city, analysed by the Gemini model for each event. Diamond markers 
show the Gemini’s estimates based on simultaneous processing of all posts for one location. 
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whether provided directly in the input data or through the prompt, 
during its analysis. To further investigate the influence of provided 
context on the output results, we conducted two experiments. In 
the first experiment, we selected two sample inputs: a CCTV video 
recorded approximately 5 km from the M7.5 Noto earthquake and 
a tweet from about 68 km away from the Prague earthquake. In 
the first experiment, multiple queries were performed on each in- 
put sample, v arying onl y the v alue of the epicentral distance in the 
prompt while keeping the magnitude fixed at its true value. For both 
cases, Gemini’s estimated MMI value systematically decreased as 
larger epicentral distances were used in the prompt, aligning with 
established principles of earthquake physics and empirical relation- 
ships in seismology (Fig. 7 , top). Similar observations were made 
when varying the magnitude, the second experiment, while keeping 
the distance fixed (Fig. 7 , bottom). These results indicate that Gem- 
ini might have a knowledge of relationships between earthquakes 
magnitude, distance to the epicentre, and ground shaking intensity 
and acti vel y use it in its predictions. Howe ver, our observ ations, 
from performing a similar test to multiple other examples, suggest 
that Gemini uses this knowledge in conjunction with the evidence 
it extracts from the provided data. This is why its upper and lower 
estimation bounds, that is MMI 8.5 and 2 for the Video example 

art/ggae436_f4.eps
art/ggae436_f5.eps


Estimating Earthquake Intensity with LLMs 1289 

Figure 6. Comparison of model uncertainties (a) (variations in Gemini’s estimates across multiple inferences) and the model confidence (provided by Gemini 
directly) (b) in intensity estimation from various types of data sources (like CCTV footage and social-media posts/news interviews). The box plots show the 
median, quartiles, and outliers of the confidence scores for each category, while the violin plots reveal the shape and density of the distributions, highlighting 
where most scores are concentrated and how they spread out. 
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nd MMI 5.5 and 2 for the Tweet e xample, respectiv ely, remain
ithin the range of viable intensity levels based on the observations

nd evidence within the input data. As an e xample, ev en when the
rompt states that provided Tweet was posted by a person 1000 km
way from a M 0.5 earthquake, a case where all the empirical re-
ationships predict MMI I or not felt intensity, Gemini still outputs
he minimum felt intensity level (MMI II) as it can not ignore the
rovided evidence by the user who clearly mentioned feeling of an
arthquake. 

These findings raise intriguing questions about the extent of
emini’s knowledge and reasoning capabilities. To further investi-
ate this, we simply asked Gemini for its reference and if it uses any
ar ticular g round motion prediction equation. Here is its response:
I did not use a specific ground motion prediction 

quation (GMPE) to arrive at the MMI estimates. My 

esponse was based on a simplified understanding 

f the general relationship between magnitude, 

istance and MMI intensity. This approach does not 

nvolve the complexity of GMPEs, which consider 

arious factors like fault type, regional geology 

nd site conditions to predict ground motion 

arameters. ’ To get a feeling for this ‘simplified under-
tanding of the general relationship’ that Gemini has learned about
ar thquakes, we perfor med a large number of queries asking for
 general estimate of MMI level at different epicentral distance,
arthquake magnitude and earthquake depth ranges without provid-
ng any input data, exemplar, and additional contextual information
Fig. 8 ). The results clearly demonstrate an understanding of
he relationship between earthquake characteristics and shaking
ntensity. It is important to consider that this knowledge likely
tems from the vast amount of data it was trained on, rather
han an inherent understanding of physics principles. Ho wever ,

ore studies, perhaps on more well-defined problems with less
ncer tain g round tr uths and more available data, are needed to
urther investigate the extent of Gemini’s general understanding of
he physical world and its phenomena. Nevertheless, the ability to
ncorporate contextual information and generate results consistent
ith established scientific knowledge highlights the potential of
LMs like Gemini in augmenting our understanding of complex
hysical phenomena such as earthquakes. 

While the MMI scale is widely used, it does not uniquely define
arthquake intensity. Though primarily trained on data referencing
he MMI scale, the Gemini model may be capable of estimating
ntensity on other scales as well. To investigate this, we conducted a
reliminary experiment where Gemini estimated intensities on the
uropean Macroseismic Scale (EMS) and the Japan Meteorological
gency (JMA) scale for three videos, each depicting an earthquake
f a different magnitude (Table 3 ). With the exception of the JMA
stimate for the M 7.5 event, the estimated intensity values across the
ifferent scales largely align with the known relationships between
hese scales (Musson et al. 2010 ). Ho wever , further testing with a
arger data set is necessary to thoroughly evaluate Gemini’s ability
o estimate earthquake intensity across various scales. 

.2 Potential applications 

he results of our study indicate LLMs hold immense potential
or deriving macroseismic intensity values from crowdsourced eye-
itness accounts. Recently, macroseismic data collection relied on
oluntar y par ticipation in str uctured sur v e ys like ‘Did You Feel
t?’. This presents a fantastic opportunity for public science par-
icipation. DYFI already facilitates community involvement, fos-
ers a sense of connection between users and their government,
nd provides a degree of catharsis (Wald et al. 2011 ). Multimodal
LMs like Gemini offer the potential for even broader engage-
ent by providing more flexible ways to contribute. For exam-

le, this system could be integrated with current online question-
aire systems to automatically extract relevant information from
upplementary materials like images or videos provided by volun-
eers. Fur ther more, it can overcome language barriers and enable
ntensity estimation from free-form descriptive reports (instead of
el ying solel y on structured questionnaires), which may offer richer
nd more detailed information. Such a system could also be used to
alidate the credibility of reports. 
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Figure 7. Estimated MMI v alues b y Gemini for two sample inputs (a CCTV video recorded at 5 km of M7.5 Noto earthquake and a tweet ∼68 km of 
M5.1 Prague earthquake) but varying provided information on epicentral distance (top) and earthquake magnitude (bottom) in the prompt. The true distance, 
magnitude and MMI for each event is depicted by vertical and horizontal lines, respectively. The dotted dashed lines are the expected MMI values as a function 
of distance and magnitude from known empirical relationships. 

Figur e 8. Gemini’ s estimates of MMI le vel at dif ferent epicentral distance ranges for v ar ying ear thquake magnitudes (left) and depths (right) . 
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Table 3. Comparison of estimated intensity by Gemini for three sample 
videos associated with three different earthquakes. MMI, EMS (Gru¨nthal, 
1998) and JMA ( 1996 ). 

Event magnitude MMI EMS JMA 

M 9.1 7 7 5 + 

M 7.5 6 6 4 
M 4.8 4 4 2 
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The ability to generate scientific measures like earthquake shak-
ng intensity directly from unstructured data such as CCTV footage
nd social media posts opens exciting new avenues in citizen seis-
ology (Bossu et al. 2011 ) and deep-learning seismology (Mousavi
 Beroza 2022 ). This makes collecting valuable scientific data from

nconventional resources such as social media posts, open com-
ents and geo-located pictures and videos more feasible, enriching

ur understanding of seismic events and their impact. This can be
 valuable source of information to constrain and improve these es-
imates of often uncertain damage scenario estimates solely based
n earthquake magnitude and location, particularly in sparsely in-
trumented regions. LLMs of fer ef ficient and ef fecti ve methods
or real-time processing and analysis of crowdsourced data dur-
ng natural disasters. This can contribute to a better understand-
ng of their impact on communities by providing real-time cri-
is mapping and rapid situation awareness (Middleton 2013 ). The
xtracted intensities (along with improved geolocation data) can
e used for various purposes such as: improving the alert models
n EEW systems, rapid impact assessment (Vieweg et al. 2010 ;
ryvasheyeu et al. 2016 ; Bossu et al. 2024 ), rapid determina-

ion of fault geometry (B öse et al. 2021 ), reducing uncertainties in
hakeMaps (Quitoriano & Wald 2022 ), improving human loss es-

imations (e.g. USGS PAGER system), distinguishing high-impact
rom low-impact events (e.g. Lilienkamp et al. 2023 ), providing
ituational awareness (Yin et al. 2012 ), protective action decision-
aking (Zhang et al. 2024 ) and assessing information credibility

Castillo et al. 2013 ). 

.3 Current challenges and potential solutions 

urrently, a major challenge/limitation lies in the lack of reliable
and precise enough) location information which could enable a
ore rigorous testing and e v aluation against ground truths. Often,
CTV footage of earthquake shaking goes viral quickly, making

t difficult to identify the original source to verify the location of
he observ ation. To full y le verage such systems for crowdsourcing
ar thquake infor mation, supplementar y geoparsing or geotagging
echniques can be employed (Middleton et al. 2018 ; Huang & Car-
ey 2019 ). Similarly, the use of official API might offer a more
recise location estimation in some cases. Beside location esti-
ation, to improve the intensity estimations, more sophisticated

rompt engineering techniques and a variety of exemplars can be
mployed. Fur ther more, the LLM models can be fine tuned using
abelled data sets like DYFI. Additionally, incorporating supple-

entary seismological data, such as recorded ground acceleration,
arthquake depths and historical earthquake evidence at that loca-
ion into the analysis process might lead to further improvements
e.g. Burks et al. 2014 ). This is where the multimodality of LLMs
ike Gemini becomes particularl y useful. Finall y, multi-LLM based
ntelligent agents could be developed to automate the entire process
e.g. Boiko et al. 2023 ). 
 L I M I TAT I O N S  A N D  P O T E N T I A L  

I S K S  

hile LLMs show promise for earthquake and natural disaster re-
earch, of fering ne w avenues for autonomous scientific inquiry, it is
rucial to acknowledge their limitations and potential risks (Bom-
asani et al. 2021 ). One challenge with using crowdsourced data

s that it is often insufficient for accurately assigning higher inten-
ities (above VI, or damaging levels). This is because people are
ess likely to submit detailed reports during stronger earthquakes
ue to factors like safety concerns and disruptions to communi-
ation networks. Wald et al. ( 2024 ) highlight this challenge and
mphasize the need to explore alternative approaches for estimat-
ng higher intensities. They also discuss the broader limitations of
sing MMI for higher intensities, pointing out that EMS-98 and
nternational macroseismic scale offer more quantitative measures
or assessing earthquake impacts. This suggests that incorporating
ata from these more quantitative scales could improve the accuracy
f intensity estimations, especially for stronger earthquakes. 

.1 Prompt engineering and its effects 

ike all LLMs, Gemini’s output is highl y sensiti ve to the input
rompt. Even minor changes can lead to different MMI estima-
ions. For example, adopting different personas in the prompt,
uch as ‘earthquake engineer’ or ‘disaster management
rofessiona l,’ can yield to different sets of outputs each tailored
o specific professional needs and interests. The high variability
f inference outputs and inconsistency of estimates in some cases
ose the other main issue. Several techniques can improve the re-
iability and consistency of LLM outputs. These include calibrat-
ng output probabilities (Zhao et al. 2021 ), using a noisy channel
Min et al. 2021 ), augmenting few-shot examples with intermedi-
te steps (Reynolds & McDonell 2021 ), or employing the Graph of
houghts (GoT) technique (Besta et al. 2024 ) for multistep reason-

ng. Fur ther more, mining and paraphrasing methods can automati-
ally augment prompt sets (Jiang et al. 2020 ). Deeper exploration of
uccessful prompting strategies (Xie et al. 2021 ) may reveal how to
licit emergent abilities of the models. Ho wever , understanding why
odels work often lags behind the development and popularization

f techniques like few-shot prompting. Best practices for prompting
re also likely to evolve as more powerful models emerge. 

.2 Summation effect 

emini 1.5 Pro boasts a remarkable ability to understand informa-
ion within a long context, allowing it to process lengthy videos
ontaining multiple reports. We investigated the impact of this ca-
ability on model output by analysing a news report featuring inter-
iews with three individuals who experienced the 2024 April M4.8
arthquake in New Jersey. The report was processed in two ways:
rst, as a single video containing all three interviews, and second, as

hree separate videos, each trimmed to include only one interview.
he estimated MMI for the long video encompassing all three inter-
ie ws w as 4.5, which matched the highest MMI estimate obtained
rom the individual interview segments (MMI 3.5, 3.5 and 4.5, re-
pecti vel y). When the original video was shortened to include only
he first two interviews, the estimated MMI dropped to 3.5. This
uggests that the content of the last interview influenced the overall

MI estimation. 
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6.3 Multilingual capabilities and limitations 

A significant advantage of Gemini is its ability to process content 
in multiple languages directly. Our data set incorporates posts and 
dialogues written in Chinese and Japanese, which the model suc- 
cessfully comprehended and analysed. Ho wever , it is important to 
note that encountering unsupported languages can lead to inaccu- 
rate location estimations (for both the post and the earthquake event) 
as the model is still able to distinguish the language and wrongly 
associated with the earthquake vehicle not fully comprehending its 
content. An interesting observ ation w as that even in such a case, 
the estimated MMI value would still remain unaffected as it re- 
lies on evidence the model can extract and confidently relate to the 
earthquake shaking. 

6.4 Irr ele v ant inf ormation and estimation accurac y 

Across several experiments, we examined the potential impact of 
extraneous information, such as advertisements or user comments, 
on the accuracy of intensity estimations. Our findings revealed no 
notable difference in model performance between posts containing 
such distractions and those without. This suggests that the mod- 
els ef fecti vel y filter irrele v ant content, focusing primaril y on the 
per tinent infor mation for estimation. Consequently, the presence 
of extraneous elements appears to have negligible influence on the 
models’ accuracy. 

7  C O N C LU S I O N  

This research demonstrates the promising capabilities of large lan- 
guage models like Google’s Gemini in estimating earthquake shak- 
ing intensity from multimodal social media data. Gemini’s ability 
to analyse text, images and videos, coupled with its long-context 
understanding and reasoning capabilities, allows for a nuanced inter- 
pretation of earthquake experiences and accurate MMI estimations. 
This innov ati ve approach of fers se veral adv antages over traditional 
methods, including: 

(i) Rapid and flexible data collection and processing: LLMs can 
ef ficientl y process unstructured data from di verse sources, b ypass- 
ing the limitations of structured surv e ys and questionnaires. 

(ii) Overcoming language barriers: Gemini’s multilingual capa- 
bilities enable analysis of posts in various languages, expanding the 
reach and inclusivity of data collection. 

(iii) Real-time insights: LLMs facilitate real-time analysis of so- 
cial media data, providing valuable situational awareness and sup- 
porting rapid response efforts during earthquakes and other natural 
disasters. 

(iv) Improved impact assessment: MMI estimations derived from 

social media data can contribute to more accurate and comprehen- 
sive assessments of earthquake impacts, aiding in disaster response, 
recovery and mitigation efforts. 

While LLMs show immense potential for citizen seismology, 
further research is needed to address challenges such as loca- 
tion accuracy, prompt engineering and potential biases. Integrat- 
ing supplementary data sources and exploring advanced prompting 
techniques can further enhance the reliability and consistency of 
LLM-based MMI estimations. As LLM technology continues to 
evolve, its application in earthquake research and disaster response 
holds significant promise for building more resilient communities 
in earthquake-prone regions. 
Ho wever , it is important to acknowledge the potential limita- 
tions of AI models and the need for human oversight to ensure 
accuracy and mitigate biases in training data. Additionally, ethical 
considerations regarding pri v acy and data ownership must be care- 
fully addressed when utilizing social media information. Despite 
these challenges, this innov ati ve approach holds great promise for 
leveraging the vast potential of social media in disaster response 
and advancing our understanding of the societal impacts of natural 
hazards. 
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